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A method is given for deriving branching rules, in the form of generating functions, for the
decomposition of representations of SU(3) into representations of its finite subgroups. Interpreted
in terms of an integrity basis, the generating functions define analytic polynomial basis states for

SU(3), which are adapted to the finite subgroup.
PACS numbers: 02.20. + b, 02.30. + g

1. INTRODUCTION

Apart from the {double) point groups and permutation
groups, finite groups have found relatively little application
in physics. Some years ago, Fairbairn, Fulton, and Klink!
considered the finite subgroups of SU(3)/C (of the eightfold
way) as possible particle symmetry groups, with largely neg-
ative conclusions.

Recently there has been a growth in the interest taken
by physicists in finite groups. If one restricts one’s attention
to representations of a space group G whose k vectors are
rational with highest common denominator g, then one is
dealing® with a finite group G /G, where G, is the space
group whose elementary displacements are ¢ times larger
than those of G. Finite groups have recently been used in
conjunction with local gauge symmetry in the flavor sector
of electroweak interactions.® A class of finite groups has
been shown to be symmetries of general spin systems.* It has
been suggested than an approximate integration over the
manifold of color SU(3) transformations can be effected by
summing over the transformations of a finite subgroup of
SU(3). Some of these developments are discussed more fully
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In this paper it is shown how branching rules, in the
form of generating functions, may be derived for SU(3) DG,
where G is a finite subgroup of SU(3). The generating func-
tions define an integrity basis, a finite number of subgroup
multiplets, in terms of which general analytic SU(3) D G ba-
sis states may be expressed. Generating functions for finite
group tensors which are polynomials in the components of a
given tensor are determined without the use of partial Mo-
lien functions; a formula is given for the sum of the numera-
tor coefficients in such a generating function.

2. GENERALITIES

Reference 6 contains a prescription for the derivation of
generating functions for branching rules from a compact Lie
group to a finite group, starting with the character generator
of the Lie group. Here we follow an alternative method
which, at least for SU(3), is simpler to implement.

The SU(3) character generator,®’ with its two terms put
over a common denominator, is

1—PQ

Now the coefficient of P? in the expansion of

[(1 — Pp&)(1 — Py~ &)1 — PE ~?%)) 'isthecharacter of the
SU(3) representation ( p, 0); decomposed into characters of a
finite subgroup G, it yields those subgroup multiplets which
are polynomials of degree p in the multiplet 3 which spans
(1,0) of SU(3). We are led to consider the generating function
B, (P), whose expansion

B,(P)=3 C,P* (2.2)

provides, as the coefficient C,, the number of linearly inde-
pendent G tensors transforming by the irreducible represen-
tation i, which are polynomials of degree p in the compon-

ents of the tensor 3 contained in the (1,0) representations of
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SU(3). It is known®'° tht the function B, (P) has the form
3 -1
Bia(P)=Z”g)Pk[H (I—Pdh)] ; (2.3)
k h=1

the denominator factors correspond to three functionally in-
dependent scalars of degrees d,,, while the terms in the finite
sum in the numerator correspond to tensors transforming by
i, in number nY of degree &, which are linearly independent
when their coefficients belong to the ring of denominator
scalars. Some general properties of the !/ are pointed out at
the end of this section. Since (0,1) is conjugate to (1,0), it
follows that

B5(Q)=B,(Q), (2.4)

Wwhere 3is the subgroup representation contained in (0,1) and
i is the representation conjugate to i. Combining the repre-
sentations found in { p, 0) with those contained in (0, g), we
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obtain

F(P, Q)= 1-PQ)ZC B;(P)B:5(Q)

=(1-PQ) 3 CBs(P)B:s(Q), (2.5)
where C [} is the multiplicity of the irreducible representa-
tion m in the direct product of representations / and i". Then
F, (P, Q)isthe des1red generating function. When
expanded,

F.(P, Q)= r, PPQ%, (2.6)

it provides, as the coefficient 7, , the multiplicity of the finite

group representation m in the SU(3) representation ( p, g).
Torender F,, (P, Q)into a “positive” form, the numera-

tor must be written as a sum of terms, each containing as a

factor one of the denominator factors (1 — P d*), 1-0 d").
Then F,, (P, ) is a sum of terms each with five denominator
factors [5 = (! + r), in agreement with Racah’s'' counting
of labels] and a numerator which is a polynomial in P, Q with
positive coefficients. In this form F,, (P, Q) can be interpret-
ed directly in terms of an integrity basis. Let 7, 17,, 775 be the
(1,0) states, 7,, 77,, 775 the (0,1) states. Then the integrity basis
consists of six denominator scalars, three of degrees d,, d,, d;
in 77, 77,5, 77 and three of degrees d,, d,, d, in 7, 7,, 5. A
numerator term P?Q ?in F,, (P, Q) represents an m tensor of
degree p in 17,, 17,, 7, and degree g in %,, %,, 7. With the
knowledge of their degrees and transformation properties it
is straightforward to determine the algebraic form of the
elements of the integrity basis. An SU(3) D G basis state cor-
responds to a numerator tensor, multiplied by a product of
powers of the denominator scalars from the same term of
F,.(P, Q). To ensure that the states have the correct SU(3)
transformation properties, i.e., belong to the representation
( p, g) where p and g are the degrees in the unbarred and
barred variables, one has two options. The first is to replace
7, by 7" and 7, by €, . 7'/'n{?; this is called the two-particle
scheme since it is based on two (1,0) representations. The
second is to make the replacements

n—a; =1, —B(N+ 3)—16;]”

(2.7
7,—a; =17, — B(N + 3)_lam'

Here B = 27,7, is an SU(3) scalar and N = 3, [n,am

+ ’—71"?77,] is the total degree; this is called the particle-anti-
particle scheme since it is based on a (1,0) and a (0,1) repre-
sentation. The proof that polynomials in a; and a; are trace-
less, i.e., orthogonal to any state containing B as a factor, is
similar to that for the “traceless boson operators” of Lohe
and Hurst."?

We now outline a procedure for determining the gener-
ating functions B, (P ), without the use of partial Molien
functions. The polynomial G tensors of degree p for those
contained in the symmetric plethysm [p] (the Young tableau
for [p] is a single row of p boxes; a single box refers to the 3-
dimensional representation 3 of G which spans (1,0) of
SU(3)). Using the direct product formulas
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(tlelp—1=[pl+[p-11]
[(Plelp—2l=[p—1,1]1+[p—23]
we arrive at a recursion formula

[pl=[elp—1—[Plelp—2]+[p—3] (2.8
which determines the plethysm [ p} in terms of [ p — 1],
fp — 2], [ p — 3]. Tocarry out the iteration, all one needs are
the Clebsch—-Gordan series which involve [1] or [1?],i.e., 3or
3. After computing a number of [ p] [the interation of (2.8) is
easily done with a computer] one notices that for some in-
teger d,, the representations contained in [ p] are also con-
tained in [p + d,] for all [ p]. This suggests a denominator
scalar of degree d,; to eliminate states containing it as a fac-
tor, replace [ p] by [ p] — [ p — d,]. When this subtraction
has been repeated twice more with the integers d, and d;, the
thrice-subtracted plethysm,
[(pl—[p—d]l—[p—d]—[p—dil+[p—d, —d)

+[p—d —d)+[p—d,—d,) (2.9)
—[p—d,—d,—d,},
will be found to vanish for p > d, + d, + d; — 3. The multi-
plicity of an / tensor in the subtracted plethysm (2.9) is the
coefficient of P? in the numerator of the generating function
B;(P).

We complete this section by noting two properties of
the generating functions B, (4 ); they are straightforward
generalizations of results given by Stanley'* for Molien func-
tions (/ the scalar representation}. The dimension ¢; of the
representation j is not now restricted to the value 3. In terms
of the partial Molien functions B;(4 ) may be written®'%'¢

1 Y
N5 A

where N is the order of the group, N, the order of the class s,
¥.. the character of the class s for the representation 7, and
al the h th eigenvalue of the matrix which represents an

element of the class s for the representation j.

The first property has to do with the sum of the numera-
tor coefficients n when B;(4 ) is written in the form (2.3).
We assume;j is a faithful representatlon of G; that is the case
for all the generating functions in this paper. Otherwise we
deal with G = G /G;, where G, is the subgroup of G consist-
ing of elements represented by the identity in the representa-
tion j. The representations of G ; form a subset of those of G.
In (2.10) rewrite the term corresponding to the class s as

NI, (1 —A/NTL (1 — Aa%)
M, (1— 4% '

The contribution of the class s to the sum £, n{ is the numer-
ator of (2.11) evaluated at 4 = 1. But this vamshes unless s is
the identity class, for which o) = 1. We find

Sa=t [I;Id,,]N““

The second property has to do with the symmetry of the
coefficients n!? about some k = k,. Let us assume that the
representation j is unimodular so that IT,a'}) "] — 1, this is the
case for all the generating functions in this paper. Replace 4

— Aa?) |, (2.10)

(2.11)

(2.12)
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by A ~'in B;(4). Then
1 Ny
BA Y=Ly Tl
A Nzﬂh(l—/i_‘a‘]’{s’)

5

Y N y*

_(=4) 3 X _ 2.13)
N £ 1,(1 —4a%))

=(—A) ByA).

The last step follows from the reality of B;;(4 ). Imposing this
symmetry on B (4 ) in the form (2.3) leads to the identity

n? = n. (2.14)
if
k+k'=Sd, —1,. (2.15)
h

1is the representation conjugate to i.
3. SPECIFICS

In this section we consider three maximal finite sub-
groups of SU(3), namely 3 (168), X (648), X' (1080), as well as
G(13,3,3), one of the “trihedral” subgroups [the order of
G(m,n,3) is mn]. The three 3 groups are discussed and their
generator matrices for the representation (1,0) of SU(3) are
given in Ref. 1. The trihedral groups are discussed in Ref. 15.
For each of these four subgroups of SU(3) we give the gener-
ating functions B; (P ), where 3 is the 3-dimensional repre-
sentation contained in (1,0). The generating functions
F, (P, Q) for general branching rules (and polynomial bases)
is given in terms of B;(P) by Eq. (2.5). We evaluate them in
an explicit positive form only for X (168).

An irreducible representation of 2 (648) or of 2 (1080)
has definite triality, i.e., is found only in SU(3) representa-
tions of one triality [the triality of the SU(3) representation

1 NP Q)

TABLE L. Coefficients #? of P* in the numerator of B;;(P) for X (168) for
0< k< 10. The representation / is plotted vertically, the exponent &
horizontally.

8 1112111
7 1 1111 11
6 1 1 1 111
3 1 1 1
3 1 11
11

0 1 2 3 4 5 6 7 8 9 10

(P, q) is { p — q) modulo 3}; a representation of X (168) or
G (13,3,3) may be found in SU(3) representations of any
triality.

(a) The subgroup 2(168)

The character table for 2 (168) is found in Ref. 1, and is
given by Littlewood.'® The embedding is such that the repre-
sentation denoted by =, in Ref. 1 is contained in (1,0) of
SU(3). We label the representations by their dimension:
1,3,3,6,7,8. Our 3 is the 53 of Ref. 1. Representations 1,6,7,8
are self-conjugate; 3 and 3 are mutually conjugate. From the
character table it is easy to determine Clebsch—-Gordan se-
ries, in particular those involving 3 or 3. The iteration of (2.8)
can then be carried out and the subtraction (2.9} implement-
ed. The degrees d,,d,,d; of the denominator scalars turn out
to be 4,6,14, so that the generating functions B; (P ) have the
form 2, n?P* /(1 — P*(1 — P51 — P'). The numera-
tor coefficients n§ are given in Table I. Because of the sym-
metry (2.14), n? = nJ} _,, it is necessary to tabulate n} for
0<4<10 only.

The generating function F,, (P, Q) for general branch-
ing rules takes the form

NP Q)

F,(P Q)= i

NP, Q)

—PH1 -0 [(1 —PY1—P)1 - Q%
NP, Q)

(I—P(1—PO1—QF

TSP —01—09

We give a number of symmetry relations which serve to
reduce the number and size of Tables II-VI in which are
tabulated the numerator polynomials N,,*(P, Q) for
m = 1,3,6,7,8 and for k = 1,2.

We have, first,

F5(P, Q)= Fy(Q, P). (3.2)
For m = 1,6,7,8, we have that

Nmm(P’ Q) = Nm{”(Q’ P)’

33
N,“\P,Q)=N,%Q,P) -3
If we write
N, *(P, Q)= z ”i:;,'p,quQq (3.4)
e
then, for m = 1,6,7,8,
n(r:l);p.q = ”(nlu';zz —pl6—g»
(3.5)

(2) 5,2
Rripg = Mm22 — pis - q°
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(1-Po1~-Q%1-0%9)

(3.1)

!
TABLE I1. The coefficients of the polynomials ¥ "(P, Q) and N '?(P,Q) for
0<p<11; pis plotted horizontally, ¢ vertically. (a) The coefficients n'"’, _; (b)

The coefficients n, .

18, 1 1 15.

10.

-

[
- s =
(L]

[ T Xi] c . . . .5 . . . . 1o
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TABLE IIL The coefficients of the polynomials N{'(P,Q)and N§, ; p is

plotted horizontally, ¢ vertically. (a) The coefficients n§, ; (b) The coeffi-
cients n{, .
1 1 1 1
18] 21 2 2
132 1 2 2 1
1 234 3
1 34 3 3 1
1 32 2 1 1 1 1
w1123 323 1
111032 2 31 1 1
112 3 4 232 1 1
222323 321
123232 21 2 2
5l1 1112222 2 12 1 1
12222211 2 2
1 111213122 212
21221 2 1 1
111 1 11 1 1
0 10 1 1 ~
0 5 0. 15 20
1 1
4 1
6
15 8 1
1 8 1
2 11 8 22
2 8 1 1
2 41 2 3 1
10 3 4
2 4 4
3 4
1 4
2 32
5 3 2 3
1 T2 oz oz 0
1 11
2 11
2
0 i 1
0 5 . 5T

TABLE IV. The coefficients of the polynomials N {'{P,@ ) and N 2(P,Q) for
0<p<11; pisplotted horizontally, and g vertically. (a) The coefficients n, .;

(b) The coefficients ni2) .

.4
8 1

|2 2 2 2 . 1 1
152 3 4 4 1 15 1 141 2
. 4 4 6 6 2 2 Ttron 2
1 5 5 8 4 1 4 2 102 2
|2 4 7 8 2 1 5 2 27 1
Jr 3 4 8 4 3 . 7 2 3
002 2 5 3 31 2 1 10 5 1 1
Jq1 2 4 5 6 2 2 4
JJ2 2 3 4 3 3 31 3
. 2 345 3 4 1 1
Jq1 2 2 4 4 5 2 .
5 2.2 3 4 2 5 1
MRl 2 2

11 1 3
AR 1

1
0 0
0 - 5 . 10 0 5 10

1396 J. Math. Phys., Vol. 23, No. 8, August 1982

TABLE V. The coefficients of the polynomials N {(P,Q ) and N?¥(P,Q) for
0<p<11; pis plotted horizontally, ¢ vertically. (a) The coefficients nll}, ; (b)
The coefficients n'2)

Tpq
5 1 1
9 1T 11
1 2 2 1 13 2
1512 4 4 4 2 15 1 163 2
. 5 41 6 6 3 2 2 15 21 1
.2 6 6 7 1 4 2 13 2
|2 4 79 2 6 2 94 1
{2 4 6 9 433 1 8 2 4
01 3 5 7 4 2 2 10 6 1 1
v 3 5 5% 4 32 1 4
1 3 344 5 4 31T 4
Jr 2 3 4 5 5 4 2
1 2 3 45 5 24
5(1 2 3 4 5 2% 5
. 12 3 2
11 2 i
1 4
0 0
0 5 10 1] 5 10

Finally, for m = 3, we have

3 1
n(B:L,q = ”13;)22 —ql6—p>
(3.6)
(4) (2)

M3pg = N322 _gi8—p-

Because of (3.2) we do not give N ¢'(P,Q ). On account of
(3.3)and (3.6) N(P,Q)and N'¥(P,Q) are not tabulated.
Finally, because of (3.5), for m = 1,6,7,8, we give n!,, g and
i . only for 0<p<11.

The preservation of the symmetry (3.3) entails the ap-
pearance of some half-odd-integer coefficients; they may be
eliminated by (i) increasing by i each half-odd n'y) g fOT
which & = 1 or 2 and ¢>p, or for whichk =3 or4andg>p
while (i) decreasing by | all other half-odd nly/, ..

TABLE VI. The coefficients of the polynomials ¥ }(P,Q ) and N J(P,Q) for
0<p<11; pis plotted horizontally, g vertically. (a) The coefficients nj, ; (b)
The coefficients n{)

Bpg”
s 1
9 2

2 2 3 3 T1s 20
1502 5 5 6 3 15 1 188 3
o8 s7 7 3 Jdz3 vz v 202
.3 779 8 1 1 44 3 15
2 4 8 8 10 2 71 21 104 1
e a7 9 513 2 9 2 43 1
0/2 4 6 8 53 2 10 7 1 1
41 4 5 515 41 2 4 1
A1 3 445 5 5 31 4
2 243 5 5 6 5 2
A1 2 4 5 5 6 2 .
51 1 3 5 5 3 5
1 2 3.4 2

12 u

1 4 1

4 .
0 oL _
0 5 10 0 5 10
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TABLE VII. Characters of triality 0 and triality 1 representations of X (648). Triality 2 .R.’s 3,, 3}, 37, 6,, 6;, 63,9, are the conjugates of 3,, 3, 37, 6,, 6|, 67,
9,, respectively. Where three classes are listed in a single column, the entry is for the first of the three. The second and third are obtained by multiplying by 1,1

for triality 0, by w,w? for triality 1, and by o*w for triality 2.

Order: 111 12 12 12 12 12 12 54 54 5 36 36 36 36 36 36
Classes: 123 4 S 6 7 8 9 10 1l 12 13 1& 15 16 17 18
1 1 1 1 1 1 1
iy 1 © mz 1 W wz
Tl 1 uz w 1 m2 w
2 2 -1 -1 0 1 1
° 7, 2 2
2 2 2 ~ -0 0 w w
% 27 2 -mz -w 0 uz w
3 3 0 0 -1 0 0
8 8 2 2 0 0 0
8’ 8 2w 202 0 0 0
B’ 8 27 20 0 0
3 3 /3eT1/18 /3835“/18 1 L1711/9 LT/

1
L 3 /1el3TL/18 L 23mi/18 ) Sm/9 RELEVE
Y 5 /362571718 11mi/18 L R 7T/
’5 6 6 /33118 STi/18 o STL/9 REJEVE
E ¢ 6 /eTL/18 29m1/18 0 Jl1mi/9 Jr/9
¢ 6 /161918 o 1771/18 o L7mi/e ST/
9, 9 0 0 -1 0 0
{b) The subgroup 3(648)

Fairbairn, Fulton, and Klink' give a character table for
those representations of X (648) with triality 0. We worked
out the rest of the table with the help of their generator ma-
trices. There are three representations of dimension 3, three
of dimension 6, and one of dimension 9 with triality 1; each
has a conjugate representation with triality 2. The characters
for representations with triality O and 1 are found in Table
VII The generating functions B, (P)have the form 2, n{P*
/(1 — P%)(1 — P'*)(1 — P'8). The coefficients n\" are given in
Table VIII. Because of the relation n{) = n@, _, it is neces-
sary to tabulate them only for 0<k<18. The representation
3, is contained in (1,0) of SU(3).

(c) The subgroup 3(1080)

The characters of triality O representations are given in
Ref. 1; McKay'” provided us with the rest of the character
table. It is given in Table IX. There are two representations
of dimension 3, one each of dimensions 6,9,15 with triality 1;
each has its conjugate representation with triality 2. The gen-
erating functions B;; (P) are of the form 2, n{P*/
(1 — P 1 — P'?)(1 — P>°). The coefficients n{? are given in

TABLE VIII. Coefficients 7} of P* in the numerator of B, (P) for 3 (648)

and 0<k<18. The representation / is plotted vertically, the exponent k hori-
zontally. (a) Triality O; (b) Triality 1; (c) Triality 2.

9 9 9 24 72 72
19 2021 22 23 2%

1 1 1 1
1 1 a
1 1 mz W
-2 2 -1 -1
-2 2 -~ —mz
-2 2 ~w2 -w
3 3 o} 0
0 -1 ~1 -1
0 -l -~ —wz
0 -1 ~uz ~-w
-1 0 0 0
-1 0 0 [¢]
-1 0 ¢ [
2 4] Q 0
2 0 Q Q
2 0 0 0
0 Q Q

Table X; because of n) = n{{, _,, they are given only for
0<k<22. The representation 3, is contained in (1,0} of SU(3).

(d) The subgroup G(13,3,3)

The order of this subgroup is 39. Its characters are given
in Table XI; they are obtained from the analytic formulas
given in Ref. 15. There are three representations of dimen-
sion 1, four of dimension 3. The generating functions B, (P)
areof the form 2, n’P*/(1 — P3)(1 — P '3)(1 — P'%). The co-
efficients n}, for 0<k< 14, are given in Table XII. For
15<k<29 they are obtained from n{’ = n{, _, . The repre-
sentation 3 is contained in (1,0) of SU(3).

4. DISCUSSION

Since analytic basis states are now available, it is possi-
ble to develop the Racah algebra (generator and finite trans-
formation matrix elements, Clebsch—Gordan or Wigner co-
efficients) of SU(3) in a finite subgroup basis.

TABLE IX. Characters of triality O and triality 1 representations of
2(1080). Z, = (1 + v'5)/2,Z, = (1 — v/5)/2. Triality 21.R.’s 3,, 35, 6,,9,,
15, are the conjugates of 3y, 3{, 6,, 9,, 15,, respectively. Where three classes
are listed in a single column, the entry is for the first of the three. The second
and third are obtained by multiplying by 1,1 for triality 0, by w,w* for triality
1, and by o’ for triality 2.

8 1 i 1 4 3 3

8 222 5 3

8 33 3 6

3 1 2 3 9, 2 2 5 3 9, 11 4 3 6

2 1 1 6'1 111 2 4 6’2 111 5 1

4 2 2 6 1 3 2 2 A 31 3 3

3 3 6, 13 1 5 6,1 12 2 2

1[ 1 3’1 2 1 2 3 1 2 1

1 2 !1 1 3 3’2 11 12

1)1 1 3,1 1 1 3, 1 2 3
0 3 6 9 12 15 18 1 4 7 10 13 16 2 5 8 11 14 17

1397 J. Math. Phys., Vol. 23, No. 8, August 1982

Order: 1 1 1 120 45 45 45 72 72 72 72 72 72 90 %0 90 120
Classes: 1 1 1 2 303 3 4 4 4 5 5 5 6 6 6 7
1 1 1 1 1 1 1 1
o 3 5 2 1 ° o -1 -1
» S 5 -1 1 0 0 -1 2
-l
3 a, 8 -1 0 z z, 0 -1
& 8 8 -1 \) Zy Z; 0 -1
9 ] 0 1 -1 -1 1 0
10 10 1 -2 0 0 0 1
. 3,1 3 0 -1 z, z, 1 0
> 3 3 0 -1 z, z, 1 0
3 6 6 0 2 1 1 0 0
T 9 9 0 1 -1 -1 1 0
©s, 15 0 -1 0 0 -1 0
Desmier, Patera, and Sharp 1397



TABLE X. Coefficients n{{ of P * in the numerator of B, (P ) for 3 (1080) and

0<k<22. The representation i is plotted vertically, the exponent X horizon-
tally. (a) Triality O; (b) Triality 1; (c} Triality 2.

15, 22 3 3 3 3
9| 1 12 2 2 2
6 1 2 111
0] 1 21 2 2 2 1
k4 1 1 1
9 112 1 2 2 31l L
g 12 2 2 1 1
1T 4 7 10 13 16 13 22
8 111 02 1 2
5 1 11 01 1
5 1 1111 15, 113 3 3 3
2 2 2 1
11 9, 1
0 3 6 9 1z 15 18 21 6,01 1 o1 2
4 11
% 1
1 1
35| 1

The methods of this paper have already been applied to
finite subgroups of SU(2), i.e., the double point groups.'® The
generating function for branching rules from SU(2) to its
finite subgroup is just that for polynomial subgroup tensors
based on the 2-dimensional representation contained in the
spinor representation of SU(2).

The methods can also be applied to higher Lie groups
and their finite subgroups.'® We outline here how the calcu-
lation might proceed. The character generator of a Lie group
can be written in the form of a fraction. The denominator is a

product of factors of the form 1 — 4,11 1%, one factor for
each state of each fundamental irreducible representation;
the variable 4; corresponds to the jth fundamental irreduci-
ble representation, 7, to the k th direction in weight space.
J

TABLE XII. Coefficients #? of P* in the numerator of B, (P) for G(13,3,3)

and 0<k< 14. The representation i is plotted vertically, the exponent &
horizontally.

~

Wl

11 2
1 1 1
1 2

v vl
-
-
oor e
Com e

b

=

L I T BN SR N

o e N W oW N

o e W e W W
- e b LW

—_ e e W W w

01N IR RS
B I =Sy N}
Wk e e e N

O 1 2 3 4

The numerator is a polynomial in the 4-variables; the coeffi-
cient of each product of powers is a sum of products of pow-
ers of the 7-variables which decomposes into characters
(some with negative signs) of irreducible representations of
the Lie group. All the parts of the character generator can be
interpreted in terms of polynomial subgroup tensors. The
denominator factors involving 4; generate tensors based on
those contained in the jth fundamental irreducible represen-
tation of the Lie group. The subgroup tensors arising from
the / fundamental irreducible representations, and those cor-
responding to the numerator of the character generator, can
be coupled consecutively using the Clebsch-Gordan series
for the subgroup. In this way we obtain generating functions
for branching rules from Lie group to finite subgroup. There
remains the problem of separating the numerator to obtain
the result in a “positive’ form if it is to be interpreted in
terms of an integrity basis.

The character generator for SU(3) in the form described
above is given by Eq. (2.1). For O (5) it is®

(1—B%(1+A4°B)— (1 — B)AB(1,0)

(1—An)(1 + Ap— )1 — AE)(1 — A€ )1 — Bné)(1 — By '€ N1 — Byé )1 — By €)1 —B) ' #1)

where (1,0)=75 + £ + ' + £ ~'is the character of the re-
presentation (1,0).

For determining the generating functions B;;(4 ) based
on the (perhaps) reducible subgroup representation j con-
tained in one fundamental irreducible representation of the
Lie group, one needs a generalization of Eq. (2.8). If the re-
presentation j has dimension ¢, the generalization is

(pl=3 (— 1}~ [1*]e(p—k]. 4.2)

k=1

of course [1°] is the identity representation.

TABLE XI. Characters of representations of G {13,3,3). € = &3,

w = elm‘/l]_

Order: 1 13 13 3 3 3 3

Classes:

~
~
w
o
w
-
~

1 1 1 1 1 1 1 1

v 2
1 1 € € 1 1 1 1
—r 2

1 1 € E 1 1 1 1
3003 0 0w’ oBwond® W01l W Be it
3 3 0 0 wkﬂ.ulD*wlz w7*ws+wu M*ms*’mg wz+m5+w6
¥ 3 o 0 wz+w54w6 m4+m10+w12 w7*w8*mll w+m3+m9
—
3 3 0 0 w7¢ws+wll w+w3+w9 mz*ws*we m4+m10+m12
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The representations of the most degenerate series of the group U(p,q) which are induced by the
representations of the maximal parabolic subgroup are considered in this article. By making use
of the infinitesimal operators of these representations in the U(p) X U(g) basis the conditions are
derived which are necessary and sufficient for irreducibility. For the reducible representations we
describe their structure (composition series). We select from among the irreducible
representations which are obtained in this article all representations of U(p,q) which admit
unitarization. As a result we obtain the principal degenerate series, the supplimentary
degenerate series, the discrete degenerate series, and the exceptional degenerate series of unitary
representations of U(p,g). The U(p) X U(g) spectrum of the representations of U{p + ¢) with
highest weights (4,,0,...,0,4,) is defined. We obtain the integral representation for the matrix
elements of the degenerate representations of U(p,g) in the U(p) X U(g) basis. The matrix elements
of the irreducible representations of U(p + ¢) with highest weights (1,0,...,0}, (0,...,0,4 ) are

evaluated in the U(p) X Ulg) basis.
PACS numbers: 02.20.Qs

I. INTRODUCTION

This paper is continuatjon of the work done in Refs. 1
and 2. In Ref. 1 the noncompact infinitesimal operators of
the principal nonunitary series representations (and there-
fore, of the principal unitary series representations) of U(p,q)
were found in explicit form. These representations are in-
duced by finite dimensional representations of the minimal
parabolic subgroup.** Using these infinitesimal operators,
we have obtained in Ref. 2 the infinitesimal operators of the
degenerate series representations of U(p,q) in the U(p) X U(q)
basis. Here we use these infinitesimal operators for an inves-
tigation of the most degenerate series representations. In
particular, we obtain the classification of unitary representa-
tions of U(p,g) of the most degenerate series. Since we work
with infinitesimal operators in the U(p) X U(g) basis, we ob-
tain the U(p) X U(g) spectrum of representations [i.e., the de-
composition of these representations into irreducible repre-
sentations of U(p) X U(g)]. The irreducible finite dimensional
representations of U(p,q) with highest weights (4,,0,...,0,4,)
are contained in certain representations of U{p,q} of the most
degenerate series (see Ref. 2). Therefore we obtain the
U(p) X U(q) spectrum of the irreducible representations of
Ulp + ¢) with highest weights (1,,0,...,0,4,) [and hence, with
highest weights (4 { ,4,...,4,4 5)].

The representations 7, , of Ref. 2 are representations
of U(p,q) which are induced by one-dimensional representa-
tions of the maximal parabolic subgroup U(p,g). Using the
action formula for the induced representations, we find the
integral form for the matrix elements of the representations
74,4, We do not, however, evaluate these integrals due to
their awkward nature. The integral form for the matrix ele-
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ments of 77, , leads to an integral form for the finite dimen-
sional irreducible representations of U(p + g) with highest
weights (1,0,...,0),(0,0,...,4 ). These integrals are evaluated in
a trivial manner. Let us note here that we consider matrix
elements of operators which correspond to “boosts”.

The matrix elements of operators which correspond to
arbitrary elements of U(p,q), or U{p + g), can be reduced to a
product of matrix elements for “boosts” and matrix ele-
ments of elements of U(p) and Ulg).

Il. STRUCTURE OF THE MOST DEGENERATE SERIES
REPRESENTATIONS OF U(p,q)

In the following we use, without further explanation,
the notation of Ref. 2. We shall investigate the representa-
tions 7, , of Ref. 2. We use the formulas (3) and (4) of Ref. 2.
It is convenient to introduce in these formulas the new
parameters

M,=m,+m,, M,=m,+m,, (1)
p=my, —my,, Jo=mi, —mg, (2)
p=A{Aa)=(—4,+4,)/2, (3)
A=A+ 4, (4)

The representation 7, ; will then be denoted by 7 A,u» Where
A, and p are defined by (3) and (4). The basis elements |m,,,
a,m,,B) will be denoted by

\M, M, J,J,aB)=IM,M,J,J,).

We will omit the labels a and A3, since in the formulas below
these parameters do not change. The formulas (3) and (4) of
Ref. 2 then take on the form

© 1982 American Institute of Physics 1399



dﬁ/‘:#(Ep,p+ 1 )'MP:M J, Jq>

qvp?

Jp_‘]q 1 gr +1
= /‘l’+ 2 _q+1Kth—l(aDB”Mp+11Mq—'1yJP+1,Jq-l)

J, +J
+ (‘u _+__p2—q)K i;K t;(aﬂ)'Mp + I’Mq - I’JP + l’Jq + l>

Jp+‘,q +p R+
+ ,u——z——p—q-+—2 K *9K *f(aB)M, + .M, — 1,J, — 1,J, — 1)
JP _Jq +o R +P
- —p+ 1)K 2K Pr@B)M, + LM, —1J, —1,J, + 1), (5)
dﬂ-A.# (Ep + lvp)|Mp’Mqu’Jq>

J, —J,
=( S AL —p+1)K;}K+}(a,,8)|Mp—l,Mq+1,Jp—-1,Jq+1)

2

_Jp+Jq —1g -1
+ (u —p—q+2)K 1K T NaB)M, — 1M, + 1,J, — 1], — 1)

2

J, +J
+ (,u +-£ 5 : )K 1K I{(a,ﬁ”Mp - I’Mq + 1’Jp + l’Jq +1)

J,
+(ﬂ+ L —q+1)1<:5;1< voaB)IM, — LM, +1J, + 1J, = 1). (6)

Itisevident thatJ, and J, are contained in the multiplicative
factors of the right sides of (5) and (6) in the form + (J, +J,)
/2, +(J, —J,)/2. This observation is important for the sub-
sequent investigation of the representation 7, .

We now want to find the values of M,,M,.J,,J, which
are admitted by the representations 7, , . It was shown in
Ref. 2 that in the representation 7, , the parameters
m,,,m,,, mi,,m, take on all possible integer values such
that m,, >0, m,, <0, m, >0, m, <0, and

my, +my, +mi, +m, =A, (7)
Therefore, M, and M, take on all possible integer values
such that

M, +M,=A, (8)
It follows from (1), (2), (7), and (8) that J, + J, isevenif A is
even and odd if A, is odd. The values of J, and J, for fixed

values M, and M, are shown in Fig. 1 (small circles). Figure
1 shows the set of points (J,,J, ) subject to the condition

B Je
M [A,l

FIG. 1. The set of points (J,,J, ) subject to the condition 0<|M,[<[A,].
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0<|M, |<|A,|. A change of M, and M, leads to a parallel
shift of the lattice points (J,,/,) such that the apex of the
lattice remains on NABN ' If |M,, | >|A,| then the apex is on
AN. If M,<0 then the apex is on BN . In each case the dis-
tance from the axis OJ, is |M,,|.

Itis clear that the set of points (J,,/, ), forall M, and M,
satisfying condition (8), covers the shaded domain of Fig. 2.
Moreover, J,,,J, are integers such that J, 4- J, has the same
parity as A, i.e.,,J, + J, and A, are in the same congruence
class mod 2, since ( — 1) = ( — 1)*".

Let us note that the set of points (M,,M_,J,,J, ) for the
representations 7, , depends on A, but does not depend on
H.

We return to formulas (5) and (6). With the help of these
formulas the following lemma can be proven

Lemma I: The representation 7, ,, is completely (and
infinitesimally) irreducible if for any collection of numbers
(M, M, T ) which is admitted by the representation
7 4,4» NONeE of the numbers

—

o IA 3

ba
FIG. 2. The set of points (/,,J,} with M, and M, satisfying Eq. (8).
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J, —J, J, +J
p+Lt—L—g+1, p+-7—5
2 2
J, +J I, —J
pot P g+ gt

[these are multiplicative factors in the coefficients of Egs. (5)
and (6)] is equal to O.

This lemma is proven in the same way as is statement
7.1 in Ref. 5 and we omit the proof.

Theorem 1: The representation 7, ,, isirreducible if and
only if 2 is not an integer which has the same parity as A .

The irreducibility of these representations follows from
Lemma 1. Indeed, J, + J, (and therfore J, — J, ) has the
same parity as A,. Hence, if 2u is not an integer which has
the same parity as A |, then none of the numbers of Lemma 1
is equal to 0. Vice versa, every representation 7, , is reduc-
ible for which 24 is an integer which has the same parity as
A,

The reducibilty of these representations will be shown
by considering separately each type (see cases 1-4 below).

Let 7, , be a representation for which 2y is an integer
with the same parity as A,. We need the following lemma.

Lemma 2: Let 7 denote a subquotient representation of
T4, (1.€., a representation which is realized on a subspace of
a quotient space) and let H denote the space of the represen-
tation 7. The space H admits certain of the basis vectors
|M,.M_J,,J,). The representation r is irreducible if for ev-
ery element |M,, M, J, ,Jq) which is admitted by H (i.e.,
which is an element of H)
(a) the number

J,—J
#+P2q_q+1

can become equal to zero only if the elements |M,, + 1,
M, 1,J, +1J, — 1) are not elements of H,
(b) the number

J, +J,
2

can become equal to zero only if the elements | M, , 1
M, 1,J, +1,J, + 1) are not elements of H,
(c) the number
J, +J
2
can become equal to zero if the elements M, + 1, M, F 1,
J, — 1,J, — 1) are not elements of H, and
{d) the number
Jp _ Jq
2
can become equal to zero only if the elements [M, + 1,
M,F1,J, — 1,J, + 1) are not elements of H,

The proof of this lemma is analogous to the proof of
statement 7.2 of Ref. 5. We refer to Ref. 5 and omit here the
proof.

In order to investigate the representations 7, ,, for
which 2u is an integer which has the same parity as A, we set
the numbers of Lemma 2 equal to zero [i.e., the multipliers of
the coefficients of the right-hand side of (5) and (6)],

p— —p+1
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P D
2f-prg1)
_ng .
LA D
/
N
D
0 AL e ) Ty

FIG. 3. Case 1: Graphical representation of Egs. (9), (10}, and (12}).

y+%;Jq—q+l=Q (9)

ﬁ%¥i=a (10)
ﬂ—ﬁ%#i—P—q+2=Q (11)
p-l =l 10 (12)

We shall consider only those representations 7, , for
which u<(p + g — 1)/2, because the representations 7, ,
and7, _,.,.,_ contain the same irreducible constitu-
ents (see Sec. 4, Chap. 5in Ref. 5). Sinceu<(p + ¢ — 1)/2and
J,>0,J,>0, it follows that the relation (11) is not possible.
Let us consider the relations (9), (10), and (12). We shall dis-
tinguish four cases.

Case I: The representations 7, , for which 2u is an
integer with the same parity as A ,, and for which

— 2u>|A,|. We represent the relations (9), (10), and (12)
graphically and obtain Fig. 3. The set of points (/,,J, ), ad-
mitted by the representation 7, ,, is divided into four parts
denoted by DX, D°, D *, D ~. The linear subspaces which
correspond to the points (J,,J, ) of the domains D ,D fuD®,
D uD%D *, DFuD®UD ~ are invariant under the represen-
tation 7, ,,. (Note that the points lying on the boundaries
belong to the domain which contains the arrow pointing to
the boundary.) The invariance is verified by using formulas

I

[A

AW prgn |

-3

e 2alwey A Jg

FIG. 4. Case 2: The set of points (/,,/, ) and the three domains D °D*.D".
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(5)and (6). The infinitesimal operatorsdr , , (E,,) of the other
E,; do not violate the invariance because dr, , (E,;) differs
fromdr, ,(E,,, )andd7, (E, ,)only by the Clebsch-
Gordan coefficients K ) (see Ref. 2).

It follows from Lemma 2 that the restriction of the re-
presentation 7, , onto D, (D*uD®)/D¥, (D uD®D *)
/(D *uD?), (D *uD°uD ~)/(D FuD°) give irreducible repre-
sentations of U(p,q). We denote themby D ,, DS ,,D 7,
D , .. The points (J,,J,) in Fig. 3 which are located in the
domains DF, D% D *, D ~, correspond to these representa-
tions, respectively. The representations 7, ,, of this case
have the following structure:

DL, * 0 0
0 Da.u * *
0 0 D;, O
0 0 0 D,,

Here * denotes a nonzero matrix.

The representation D} , is finite dimensional. The
highest weight of it is (1,,0,...,0,4,), where A, A, are defined
in terms of A ,,u by means of (3) and (4) (see Ref. 2). The
condition J, 4+ J, < — 2u defines completely the set of
points (M, M, J,J,) which corresponds to D ﬁ . and, in
turn, this set defines completely by (1) and (2), the set of
highest weights

(m15,0,0.,0,m, )y (M1450,...,.0,m 7 i)

of the representations of U(p) X U(g) which are contained in
the representation D % , of U(p,g) [and therefore, of
Ulp + g)), when restricted to U(p) X Ulg). This set of highest
weights can be easily found for every particular case.

Case 2: The representations 7, , for which 24 is an
integer with the same parity as A,, and for which
—2u<|Ay|, u# + g — 1)/2. Representing the relations
(9), (10), and (12) graphically we divide the set of points
) » ~,) into three parts, D 9, D™, D~ (see Fig. 4). The linear
subspaces which correspond to D, D°uD *, D°uD ~ arein-
variant under 7, , . The representation 7, , realizes on D o
(D°uD *)/D°. (DD ~)/D°, irreducible representations of
U(p.,q). This is a consequence of Lemma 2. We denote these
representations by D ‘,’,, ur D A D 4., respectively. The re-
presentations 7, , for this case have the structure

Ip

[ Al

N

9] (Pp-¢3f2 A
FIG. 5. Case 3: The domain D? as a line.
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O £
(Prg=ifz (g2 A I

FIG. 6. Case 4: A graphical representation of Egs. (9) and (12).

D(,),,# * *
0 Df, O
0 0 D,

Case 3: The representations 7, , for which 2u is an
integer with the same parity as A,, and for which
H=p+q/2—1

This case is really included in Case 2. We separate it in
order to emphasize that in this case the domain D ® turns into
a line (see Fig. 5).

Case 4: The representations 7, , for which 2u is an
integer with the same parity as A, and for which
p=p+q—1)/2

The relations (9) and (12) are represented graphically in
Fig. 6. They divide the set of points (J,,/, ) into two parts.
Between the lines, according to relations (9) and (12), there
are no points {(/,,J, ) admitted by 7, , . The linear subspaces
which correspond to the domains D * and D ~ are invariant
under 7, , [as a consequence of (5) and (6)] and the represen-
tation 7, ,, is decomposed into two irreducible representa-
tions of Ufp,q). We denotethemby D | ,, D ; ,, respectively.

lIl. REPRESENTATIONS OF U(p,q) OF THE MOST
DEGENERATE UNITARY SERIES

We have constructed the irreducible representations
7 4,..» Where 24 is not an integer of the same parity as A ;, and
the irreducible representations D ; ,, DS ,, D 1 ,, D e
We now want to select those from among them which can be
unitarized [i.e., those which are infinitesimally equivalent to
unitary representations of U(p,g)].

Theorem 2: The following representations are
unitarizable:

(1) the representations 7, ,, 4 = ip + (p + g — 1)/2,
where peR, p #0 (the principal most degnerate unitary
series);

(2) the representations 7, , for which A, has the same
parity as p + g, and for which g is in the interval
(@ + q)/2 — 1 <u <(p + q)/2 (supplimentary most degener-
ate series);

(3) the representations D ,,,D . ,;

(4) the representations DG, o2 -1

Proof: Unitarizablilty of the class (1) representations
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follows from formulas (5) and (6). Indeed, unitarity of the
representations of U(p,q) is equivalent to the condition that
the noncompact infinitesimal operators satisfy, on the set of
finite linear combinations of |m,,a,m B8 ), the relations

dﬂ.A,p(Ers). = - dTTA,y (Esr)‘ (13)

The formulas (5) and (6) show that this relation is satisfied for
E,,.1,E, .\, ThatEq.(13)is satisfied for the other infini-
tesimal operators E,; follows from the fact that the E,, are

obtained by means of commutations of £, , , |, E, , , , with

the compact infinitesimal operators. The commutations

d”rA,p(Ep,pﬁ» 1 )lMp!Mq»Jpn’q )I

5 —J J,—J
=[(-ur 2 s

conserve the unitarity condition (13).

The representations of the classes (2), (3), (4) are not
unitary in the basis |m,,a,m 5 ). Let us introduce a new
basis:

\m,.am, B) = alm,,,m,,mi,my)"*m,am,.B),
where the coefficients a(m,,m,,,m{,,m.,) are defined by
formulas (5)—(8) of Ref. 2. Here m, is replaced by

A, =(A,/2) — u, and m, by A, = (A,/2) + w. In the basis
lm,,a,m, B )’, the formulas (5} and (6} transform to the
formulas

172
—g+ 1)} KK Y aB)IM, + LM, — 1J, + 17, — 1)’

[ J +J J, +J 1 ,
+ (u+ "; ")(—#+ "er : +p+q-—l>] KK @B)M, + .M, —1J, + 1J, +1)
r J J J J 172
+ ( ~P_J2f__q_-p_q+2)(_#_%i+1)] K 42K *2(aB)|M, + LM, — 1J, — 1J, — 1,)’
1 J, — J —J 1/2
+ ( - "2J" «-—p—}-l)(-—-,u.— ”2 "+q)] K 22K *PaB)M, + LM, —1J, — 1J, + 1), (14)
Ama By, M, M, T,
[ Jp— q Jp_"q 2 —1 _1 '
= — ~lu-}-—z----{»-p—l u+ —q]| KT K (@B)M, -1 M, +1J,-1,J, +1)
[ J, +J J, +J, 172 ,
(a2 g o) e )| Tk s s, — 1 41, 1, - 1)
: I+ I+, ,
- (_#__ "'; q)(.“- d > i _p— q+1)] K 4K aB)M, -1 M, +1J,+1,J,+1)
[ JP_JQ v-p —p ’
N | (YR R4 BTSN | | P K ;2K JP(@B)M, — M, + 1J, + 1,J, —1)". (15)

The proof of unitarity of the representations of the
classes (2), (3), and (4) is the same as for the case of the class (1)
representations, but now we use the formulas (14) and (15)
instead of the formulas (5} and (6). This proves the theorem.

It can be shown that the representations of Theorem 2
exhaust all unitarizable representations of U(p,q) among the
irreducible representations 7, ,, D {,, DS ,, D A~ There-
presentations of class (1) and of class (3)foru #(p + ¢ — 1)/2
have been constructed in another manner in Ref. 6. It was
shown in Ref. 6 that the representations D 7, and D ;, for
BF(p + g — 1)/2 belong to the discrete series, i.e., their ma-
trix elements belong to L *(U(p,q)). Physicists call the repre-
sentations of class (4) “ladder representations.” Class (4) are
also called representations of the exceptional series.

The representations of Theorem 2 for the case of the
conformal group SU(2,2) were considered in Ref. 7. The
structure of the representations 7, ,, for SU(2,2) were inves-
tigated in Ref. 8 (see also Ref. 9).

IV. THE REPRESENTATION 7, , IN GLOBAL FORM
We have obtained the representations 7, , in an infini-
tesimal form. Now we want to obtain them in global form.

1403 J. Math. Phys., Vol. 23, No. 8, August 1982

We consider in U(p,g) the minimal parabolic subgroup P,.
This subgroup has a decomposition®>

P, =A;N, M, = ANM,(K),
where 4 and ¥ are defined by the Langlands decomposition

of the minimal parabolic subgroup P = ANM (see Ref. 1).
The subgroup A4, consists of the matrices

1 0 0
| )2
1
a, =| 2 __ coshysinhy (16)
sinh 7 l cosh 7 0
1 q
0 | o -
- ! 1
Its Lie algebra a, consists of the matrices
0 o
0la
alo | **
o | o
A. U. Klimyk and B. Gruber 1403



The subgroup M, consists of the matrices

B 010

——

,(17)

—

where the (p + ¢ — 2) X {p + ¢ — 2) matrices, constructed
from the four matrices denoted by *, constitute the subgroup
Up — 1,¢ — 1). Thus, M, ~U(p — 1,¢ — 1) X U(1). The sub-

group M, (K ') coincides with the intersection of M, with
K = U(p) X Ulg). It is clear that M (K )~Ufp — 1)
X Ufg — 1) X U(1).

The subgroup N, can be obtained in the following man-
ner. First one constructs the Lie algebra n, of N,. This alge-
bra can be constructed with the help of the Lie algebra n of N.
The Lie algebra n is generated by the root vectors

WDy, - @;? em,+(uj’ i<jv em,’ezoJ,.’

which were described in Ref. 1 The subalgebra n, is generat-
ed by the root vectors which belong to those restricted roots
which are not identically equal to O on a,. It is easy to see
thate, _,e, .. ,/#1, e, €, are the root vectors gener-
ating n,. In order to construct NV, we have to construct exp
n,. However, the structure of N, is complicated and thus we
will not construct all elements of V. For our further consid-
erations it will be sufficient to deal with a subgroup of N,,.
This subgroup is generated by two root vectorse,, _,, , two
root vectors e, , ,, , and the root vector e,, . We exponen-
tiate these root vectors. The two matricese, . (as basis

elements of a Lie algebra) generate the subgroup

[E,_, 0 0 o0 0 0]
0 1 —-Z Z 0 0
0 4 1 0 Zz 0
_ b/
Now — o 0 z 0 1z o | %G
0 0 Z -Z 1 0
| 0 0 0 0 0 E, ,|

where E, is a unit # X n matrix. The two matrices e

generate the subgroup

W, + w,
[E,, 0 0 0 0 0
0 1 —-Z, Z 0 0
0 Z, 1 0 -2z 0
= , 2Z,€C
@t e 0o ZzZ, 0 1 -z, 0 '
0 0o -Z Z 1 0
| O 0 0 0 0 E, ,]
and the matrix e,,, generates the subgroup
E, , 0 0
0 1—it  —it 0
N,, = , teR.
2 0 it 1—it 0
0 0 0 E, |
Let us construct the subgroup N , of N, generatedby N,, _, .N,, . .., N,,, . Toobtain this subgroup it is sufficient to multiply
the matrices
-Ep —2 0 0 0 0 0 T
0 1 —(Z,+2Z) Z+Z 0 0
) N 0 Z,+Z 14i-222Z —it+2Z2Z -2Z,+Z 0 (18
NB - wpwy T wy Wt 200, T 0 Z| + Z l.t _ ZZ—IZ 1 _ it + ZZ]Z . Z] + Z 0
0 0 -Z,+Z Z, -7 1 0
| O 0 0 0 0 E, ;]
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Now we construct the representations 7% ; of U(p,q) which
are induced by the (irreducible) representations

hnm—sexp[A (Ink)]o{m), hed,, neN,, meM,, (19

of the subgroup P, = A,NyM,. The A are linear forms on
the Lie algebra a, and the o are the one-dimensional repre-
sentations of M, which are identically equal to 1 on

Ulp — 1,¢ — 1). The representation 7% ; acts on the space
LK), K = U(p) X Ulg) consisting of functions fof L %K)
such that

fimk)=olm)f(k), meM,K). (20)

The operators 7%, (g) act on the functions feL 2 (K ) by the
formula

7oa(8) fk) = exp[4 (Ink )] flk,), (21)
where k, and 4 are defined by the decomposition
kg = hnlexpX )k,, hed,, neNyXemyrp, k,eK

(see Ref. 3 and Theorem 1.3 in Ref. 5). For more details on
the construction of the representations induced by the repre-
sentations of parabolic subgroups see Chap. 5 of Ref. 5.

Since a, is a one-dimensional subalgebra the linear
form A is defined by a single number u = A (¢}, where eiis a
basis element of a,. We choosee=(E,,, | + E,, (,)/2.
The representation o of Eq. {19) is defined by a single integer
A ,, characterizing the representation e*—e“*'® of the sub-
group U(1) of M. Thus 7% , is defined by two numbers uz and
A . For this reason we denote this representation by 7, ,, in
what follows. The representation 7, , is in fact infinitesi-
mally equivalent to the representation 7, ,, of U(p,q), which
was considered in the previous sections. To verify this it is
sufficient to construct for the representation {21) the non-
compact infinitesimal operators by using Lemma 5.2 of Ref.
5. This construction is simple and we omit it. The noncom-
pact infinitesimal operators for both representations are
identical in appropriately chosen bases.

The representation ¢ is trivial {i.e., = 1) on
U(p — 1,4 — 1) [and, therefore, on Ulp — 1) X U(g — 1)].
Hence, because of (20), the functions of the space L 2 (K ) can
be considered as functions on the coset space

= (Ulp — 1)XUlg — 1)\ (U(p) X Ul(g))
~Ulp — INUlp) X Ulg — 1)\ U(g).
We now introduce parameters on Y. In order to do this we
use the decomposition {see Ref. 10)
g=ha,(8,)8,6.)h", hh'eUn—1), (22)

of the elements g of U(n). Here a,,(¢,,) differs from the unit
n X n matrix by the last diagonal element, which is equal to
e; B,(6,) has the form

En -2 0 O
B.06,) = 0 cos8, —sind, | 0<8<7/2.
0 sin G, cos 8,
(23)

In (22) one can take, instead of 4 and 4 ’, the elements h# and
h ~'h’,heU(n — 2). Therefore, theuniquedecomposition can
be chosen in the form

g§= han (¢n )Bn (en )an —1 (¢n —1 )ﬂn —1 (0n —1 )'"02(¢2)ﬂ2(62)al(¢1)'
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Hence, the coset space Y’ is parametrized by

¢p’ ¢p -1 , p— 1 ¢2!02’¢1) ¢q ’¢q’ r¢2’¢2’¢1 (24)

Apart from U(p — 1) X U(g — 1), the group M,(K ) con-
tains the subgroup U(1). Therefore, the functions of L 2(K )
are, in fact, functions on the coset space

= (Ulp — 1)XUlg — )X U())\(Ulp) X Ulg))-
Since U(1) is realized in the form of the matrices given by Eq.
{17), it becomes necessary to set q'i_q = — ¢, in Eq. (24) in
order to obtain a parametrization of the space Y.

The invariant measure on K leads to the following mea-
sure on Y (see, for example, Ref. 10):

(p — g —1)! ﬁ 2k 3
dy=2X2_—_"9 " 7 sin 6,.cos 6,d6 ||d¢,
,V g1 s k k k,- :

, g—1 _
x II sin™* = 29,. cos v ¥, T| .- 25)
K'=2 r=1
Thus, instead of the functions fof L 2 (K ) we can consid-
er the corresponding functions of the parameters (24), in
which ¢, = — @, or the functions depending on the ele-
ments of K of the form

k'= Kﬁzak(¢k)ﬁk(0k )'al(¢|)aq( - ¢p)ﬁq('//q)
X f[ ak'((ﬁ_k')ﬂk'(ll’k')al(‘;l)-

k'=g—1

(26)

V.THE INTEGRAL FORM FOR THE MATRIX ELEMENTS
OF 7, ,

We shall consider the matrix elements of the represen-
tation operators which correspond to the elements (16) of
U(p,q). We want to find an explicit form for the operators
T 4,,(@,). In order to do this we use formula (21) and we find
the parameters corresponding to the element k, forg =a,,.
If the element k" has the form (26) then

k'a, =a,(8,)8,(6,)a,( — ,)8,(#,)a, k", (27)
where
k"= f[ a, (@i )Bi (O )ai(d)) _H_ A (Bic- 1By (thx )a ().
The elementa,(4,)8,(6,)a,( — ¢,)8,(¢, )a, is represented in
the form

na,a,(é,)8,0,)a,(—,)8,(¢,), neNg. (28)
Comparing these two elements we find 7',6 .8 ,,¥, as func-

tions of 7, ¢, 8,,, ¥,. These functions are (for convenience
we omit the indices p and g)

sin @' = sin 6 {(cosh 7 cos & — sinh 7 cos e ~ )

+5sin%9 )12 (29)
sin o/
= sin ¥[(cosh 77 cos ¢ — sinh 7 cos Ge?*)? + siny] /2,
(30)
cos &'
cosh 77 cos @ — sinh % cos ¢ e ~ % (31)
[(cosh 7 cos @ — sinh 7 cos ¢ e ~ 24 )2 4 sin%0 1'/2’
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Y 2ip
cos ¢ = cosh 77 cos ¥ —sinh g cos B e

" [{cosh 77 cos # — sinh 5 cos 8 ¢%¢)* 4 sin*y] /2’

32)

okt
_ ((cosh 7 cos & — sinh 77 cos ¢ e ~24)* + sin29)‘/222,-¢
(cosh 77 cos 1 — sinh 77 cos 6 €%} + siny ’

(33)
e~ ™ = [(cosh % cos @ — sinh 77 cos ¥ e~ 2#)? 4 sin?§ }'/?
X [{cosh % cos ¥ — sinh 7 cos 8 €¥¢)? + sin?p] /2
(34)
According to (27)-(34) m, ,{a,) acts upon the functions f by
the formula

WA,u(an )f(¢p 761; ’¢p -1 ’ep -1 !""¢b¢q 1¢—q -1 ’¢q -1 ’“‘?¢_1]

= eznyﬁf@;»e;v‘ﬁp- 18,1 )“'!¢l’w¢’]’¢—q— 1 l!"‘?&l)'

(35)
To evaluate the matrix elements we have to choose an
orthonormal basis in L 2(K ). We do this by choosing the

matrix elements of the representations of U{p) X U(g) as a
basis. The irreducible representations of K are contained in
T 4,, DOt more than once (see Ref. 2). Moreover, 7, , con-
tains, with unit multiplicity, all irreducible representations
of U(p) X U(g) with the highest weights

{m,0,...0my)y () (11,0,...,0,10)y,,  m 20, m,<0,

n,>0, n,<0, {36)
for whichm, + m, + n, + n, = A,. For convenience the re-
presentation with the highest weight (36) will be denoted by
[m]X[n].

The matrix elements

{dim[m] X [n])"2D ">k \=|m,n,a) (37)

can be taken for a basis for the space L 2(K ), where a,, den-
otes the double Gel’fand—Zetlin pattern (1) of Ref. 2, and
corresponds to the invariance with respect to the subgroup
U{p — 1) X U(g — 1). The symbol a in (37) represents the
double Gel’fand-Zetlin pattern

0 « 0 n} . 38)

The matrix elementsof 7, ,(a, ) are now evaluated between the basis functions (37). It is shown in a standard manner (see,
for example, Ref. 11} that due to {35) these matrix elements depend only on A, and the first two rows of the patterns (38);
moreover, the second row of both schemes «, & have to be the same, i.e.,

(m,n,a ’TrA,,u (a‘r] )|ﬁ’ﬁ’d> =d (/:r;’r:)(rﬁﬁ){m‘n’] (77)’

where (m',n’) is the second row for the schemes ¢ and &.

(39}

According to Ref. 10 (see also Ref. 12), the matrix element D ;7){a, (4 )8, (8 )) of the representation (m] of U(p} [here 5, and
3 represent that part of the schemes a, and « of Eq. (37), which corresponds to the subgroup U(p)] is given by

DE'};‘(GP(¢ )ﬁp(e ))ED g:lm' (¢v6) = eM( T mz,d Om,m’ (9 )v m= (m|,0,...,0,m2), m’ = (m'pov-wO,m’z), (40)

where

d0,10)=(cos O ™™ S N mmo,mi my K Yisin )%™, (41)
k = m{

The function 4§, (6 ) can also be chosen in the form

d7..(0)=(cos @)™ 2 N'(m,,mym) ,mj,k )sin @) ™ 7 2, (42)

k=m,

The formula (41) is defined by (46) of Ref. 10, and (42} is defined by (47) of Ref. 10. The expressions for N and N’ can be taken
from (46) and (47) of Ref. 10. Let us note that in (40)—(42) the third row has to be taken to be equal to (Q,...,0) since the matrix

elements (39) depend on two rows of the scheme (38) only.
The matrix element (39) is defined by the formula

d’hl‘ J— .
(masyimaimeny (77 . dim(m' X (7]

P —Uig—1) [([dim[m]X [n))dim[A])x [7])]'" J””f’”j“d@dw(,,

Xsin® = %@ cos Osin® Y cosy Dm($,0\D L — ¢ ) 7D g 0D — b W), (43)

where 7,6 ',0 ', ¢ are defined by (29)-(34). Substituting the explicit expressions for 7',¢ ',8 ', and using the formula (41), we
obtain the integral form of the matrix elements (43] of the representation 7, ,,

o — lg—1) [(dim[m]X[n]){dim[A]Xx [7])]'?

d Cr:lr:)(ﬁﬁ)(m',n’) ()=

LA ) dim[m'} X [r']

x § % % % Nmumamimy kN (i igmims, k)

/2 w/2 v
WA (Rt 13 SN (i} 5 5) j f f d6 dip d (sin G4+ K e =
o o 0
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x(cose)"'i+'"5—’"|—m;+l(sin ¢)2ls+s’—n(—n§+q)—3(cos ¢)n(+n§—n,—n,+1

X [(cosh 7 cos @ — sinh 7 cos ¢ e ~ ##)? + sin’8 ]"*' ~ 24— ¥ [(cosh 7 cos ¥ — sinh 7 cosh €24 )?

m{ + m; — i, — m,

+ sin?y]“ — 24 = (cosh 9 cos @ — sinh 7 cos ¢ e ~2¢)
X (cosh 5 cos 4 — sinh 7 cos G2 )" " T h T Fag2idimi + ma — y — o). (44)
Using the formula (42) for the matrix elements (40), we obtain a different expression for the matrix elements (43).

To obtain the matrix elements (44) in an explicit form, we have to evaluate the integrals. We do this for special values A,
and 4 in the following section.

VI. MATRIX ELEMENTS OF IRREDUCIBLE REPRESENTATIONS OF U( g + q) WITH HIGHEST WEIGHTS (14,0,...,0),
(0,...,0, 1)

We use the formula (44) in order to evaluate elements for the irreducible representations of U( p + g) with highest weights
(0,...,0, 1), A<0, in the U( p) X U(g) basis. It is known that the representations of U( p + g) with the highest weights ( — 4,0,...,0)
are contragradient to the representations with the highest weights (0,...,0, 4 ). Therefore, if the matrix elements for the
irreducible representations of U{ p + q) with the highest weights (0,...,0, A ) are known then those of the representations with
the highest weights { — 4,0,...,0) are known too.

In order to find the matrix elements for the irreducible unitary representations of U(p + ¢) with highest weights (0,...,0,4 ),
we shall first evaluate the matrix elements for the finite dimensional irreducible representations of U(p,q) which have these
highest weights. These representations are contained as subrepresentations in the representations 7, , for which
A =2u = A.InSec. 2 we have explained how to find the U(p) X U(g) spectrum for the finite dimensional subrepresentations of
7 4, In particular, it is easy to find that the finite dimensional representations of U(p,q) with the highest weight (0,...,0,4 ),
A<0, have a U(p) X U(g) spectrum

(0,150 Juipy (- 03050 + U000 — Vs 1000008 + 205y (0000 — Dsgris (OreessOs iy Ose-s0A Y-

We consider the formula (44) for the matrix elements of the finite dimensional subrepresentations of 7, ,, for which
Ay =2u =24,

drue oy P=le—1) [(dim[m] X [n])(dim[#] x [7])]""

rmmmANem o) T dim[m'] X [n’]
/2 /2 e

X N (0,m,0,m3 ,0)N (0,77i,,0,m3 ,0)N (0,1,,0,n5 ,0)N (0,7,,0,n; ,O)J f f dOdydg (sin ¥ ™3
(0] 0 0

X {cos @)™ ™ Usin )™ =™ (cos ¢)™ ™ ¥ '(cosh 77 cos 6 — sinh 7 cos e ~ )™
X (cosh 77 cos 1 — sinh 77 cos @ €24 )"~ Tgtima = Aalé, (45)

The powers of the trigonometrical functions in (45) are non-negative integers. Therefore the integral can be evaluated in a
trivial manner. Since

s, RO my —m - -
: — 2ig\m3 — iy 2 2 . Y — A, — 5 — iy —
(cosh 77 cos 6 — sinh 7 cos e ~ ¥¢)™ =3 ( ] )( 1)'sinh coss e ~ 2rcosh™ ~ ™~ "peos™ ~ ™76,

r=90

. Lo s m ) — A, L o b o
(cosh 77 cos ¢ — sinh 7 cos @ €*#) " = Z( ,)(—1)’s1nh’17 cos”0e*"? cosh™ ™™ " "y cos™ Ty,

r=0 r
the integral in the right-hand side of (45) is equal to

m; — i, ny — A fm! — m n. —n . , . . L2 /2 e ,
> Z( g . 2)( 2 ,2)(—1)'+“(sinhny+'(cosh17)"'2“2—"'2*"2"—’[ J fd9d¢d¢(sin6)2w_m2)’3
r o 0 0

r=0 r=0
X (COS 9 )Zmi — iy — My —r4+r 4 l(sin ¢)2(q — nj) — 3(005 ¢)2n§ —n,— A+ r—r 4+ ]e2,~[mz — A, 4 — VW. (46)
I
The relations (45) and (46) define completely the matrix ~_{cosh 7 sinh 77
elements for the finite dimensional irreducible representa- $ (sinh 7 cosh 77) s
tions of U(p,q) with highest weights (0,...,0,4 ). To obtain the coshysinhy \"¢(cosf —sin6
matrix elements of the corresponding representations of = ( . ) — ( . ) )
Ulp,q) we have to make an analytic continuation in 7:17—76. — i sinh v cosh v sinh  cos ¢
But this continuation does not transform the matrix a,) [see where
(16)] into a matrix of a rotation in the plane (p,p + 1). These s (1 0)
rotation matrices can be obtained in the following manner: N0 i/
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We can consider the action by § as an isomorphism pf U(p,q)
onto a group U’(p,q). Hence, we can consider the following
representations of U’(p,q):

U'(p.gog'=35~"¢s—T,, geUlpg),

where T, are the operators of finite dimensional representa-
tions of Ufp,q). Thus, the formulas (45} and (46} define the
matrix elements of the operators of the representation of
U’(p,g) corresponding to the element

( coshn  isinh 77)
—isinhy coshy/’
Then an analytic continuation 7—i@ in (45) and (46) leads to
the matrix elements of the representations of Ufp + ¢) with
highest weights (0,...,0,4 ). Since cosh 5—cos 6, sinh 7—
i sin @ for p—i6, we obtain for these matrix elements
d(mn}(rﬁfz)(m'ﬂ') (9 )
_ - g —1) ((dim{m]x[n])dim[7]x[A])]'
T dim[m'] X [#n']
X N (0,m,,0,m3 ,0)N (0,/7,,0,m; ,0)
X N (0,n,,0,n3,0)N (0,A,,0,n3,0)
mig T i fm) — ﬁ2) (”ﬁ - ﬁz)
X
AN ([
my+m,+r—r +1)
2
n2-+-ﬁ22~r+r' 4 1)

X ir+/(sin6)r+r’(cos9)"‘5*‘"3-'7'27'727""

X{—1y*"B (p—- my — 1,m} —

XB(q——ng — Lnj —

(47)

where B (.,.)is abeta function and & is a Kronecker symbol. In
this formula terms appear which are imaginary. In order to
avoid their appearance, we have to introduce a new basis
|m,n)’ = i"™|m,n), where |m,n) is the basis in which we
have evaluated the matrix elements (47). The new basis leads
to a multiplication of the matrix elements (47) by the factor
i™ = ":_Thus, on the right-hand side we have i~ ™"+ ",
Due to a Kronecker symbol it holds m, — A, + r + 7 = 2r.
Therefore, in the new basis we have to replace the factor "+~
in (47) by ( — 1)". Taking into account that m, + n,

= #ii, + A, the matrix elements (47) in the basis |m,n) can
be written as

X amz + A,

d(mn)(ﬁw’r)(m'n')(e) = M(m’n’ﬁ’ﬁ’mlyn’)

min{mj — Mi,,n; — ny) m. — ﬁ,l" n, — ﬁ
SO AN (s

r = max(0,m, — #1,) r 2 — My =+ r
X (=1)™""™*"Blp—m; — l,m; —my+ 1)
XB(g—n; — Lnf) —ny + l)sin @)+~ m
X (cos @) Mt i m o2

(47')

where M denotes the numerical coefficient which preceeds
the sum on the right-hand side of (47).
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D(mn}(r?&ﬁ){m’n‘l (6 ) =

The matrix elements (47°) for the representations of
U(p + ¢} with the highest weight (0,...,0,4 ) constitute a repre-
sentation matrix which is not unitary. To obtain matrix ele-
ments in a unitary form it is necessary to introduce the new
basis elements |m,a,n,8 )" by means of the formula

|ma,nB)" =aimn)~""*\ma,nB),

where the a(m,n) are given by the formulas (5)(8) of Ref. 2.
Therefore, in unitary form the matrix elements for the repre-
sentations of U{p + g) with highest weights (0,...,0,4 } have
the form

= /2
a(m,n) 9), (48)

W (mnl(rﬁﬁ)(m'n‘)(
Since the operator 7;'g of the representation is contragra-
dient to the representation , is defined by the relation
7, = m,_, where T is a transposition, it follows that the
matrix elements 5(m,n,(ﬁﬁ,(m.n,) (@) for the representations of
U(p + q) with the highest weight ( — 4,0,...,0), A <0 [this re-
presentation is contragradient to the representation with the
highest weight (0,...,0,4 )] are defined by the formula

D(mn){ﬁﬁ)(m'n') (9 ) = D(mn'(rﬁﬁj(m’n') (9 )
Here D--(8 ) is defined by (48) [under the condition thatd---{8 )
is real], and m = ( — m,,0,...,0) if m = (0,...,0,m,). The same
relations hold for m,n,i,m’,n’.

The coefficient (a(,7)/a(m,n))'/? in (48) is defined by
the formula

Py —m, — _ Wi/2
(a(,7)/a(m,n))"/? = H (At m, ‘+' q +{22
j=o (my—p+j+1

if 7, > m,, and by the formula
my — iy — ) 3. — 7 172

(a(ﬁ,ﬁ)/a(m,n))”z — H {m2 P~+j + 1) —7
=0 (—A+m+q+))

if M, <m,.
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The concept of congruence of representations of Lie algebras is generalized and applied to the

finite-dimensional representations of Lie superalgebras.

PACS numbers: 02.20.Sv, 02.20.Qs
I. INTRODUCTION

The SU(3) triality number introduced in Ref. 1 is a prac-
tical tool which simplifies the task of decomposing the tensor
product of finite-dimensional, irreducible SU(3) representa-
tions. This concept has been generalized® to provide an
equally useful equivalence relation (called congruence} on
the finite-dimensional representations for each of the simple
Lie groups.

The purpose of this paper is to point out that the con-
gruence class concept is actualily far more general than has
been used to date. First, we provide a unified presentation of
this concept which applies to a large class of representations
{finite-dimensional or not) of both Lie algebras and Lie su-
peralgebras. Secondly, we present explicit formulas for the
labels of congruence classes of finite-dimensional represen-
tations of simple Lie superalgebras and illustrate their use.

The classification of finite-dimensional, irreducible re-
presentations of the simple Lie superalgebras has been com-
pleted by Kac.? In this classification Kac points out the
existence of “‘typical” and “atypical” irreducible representa-
tions. The typical ones are direct summands in any represen-
tation in which they appear. The existence of atypical irredu-
cible representations is related to the fact’® that finite
dimensional representations of simple Lie superalgebras are
not completely reducible in general. This of course means
that the decomposition of tensor products of such represen-
tations is much more difficult.” The congruence labels for
these representations, having the same properties as those
for Lie algebra representations with respect to tensor pro-
ducts, provide an easy-to-use tool to simplify this task. More
precisely, the label of each summand of the decomposition
must be equal to the sum of the labels of the two factors of the
tensor product. Clearly the utility of this concept increases in
proportion to the number of congruence classes which exist
for a given algebra. In general we observe that there are far
more congruence classes for finite-dimensional representa-
tion of Lie superalgebra than for the Lie algebra cases.

Section II of this paper is concerned with setting up the
notation and general properties of the congruence relation.
In Sec. III we provide explicit results on the congruence
labels for finite-dimensional representations of simple Lie
superalgebras and give some examples.

Let L denote a simple Lie (super) algebra over the com-

*'Work supported in part by the Ontario-Québec Exchange Programme,
The Natural Science and Engineering Research Council of Canada and by
the Ministere de ’Education du Québec.
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Il. NOTATIONS AND DEFINITIONS

plex number C with fixed Cartan superalgebra H. 4 repre-
sentation p:L—gl(V') of L is said to be H-integralif and only if
the representation space F'= & ;.. V; where

V, = {veViplhyw=A(h W forall heH } and if for any two
weights 4, and A4, the difference A, — A, is an integral linear
combination of simple roots of L. If A, and 4, are two sets of
simple roots of L, then each a€4, can be expressed as an
integral linear combination of the simple roots of 4,. Thus
the definition of an H-integral representation is independent
of the choice of simple roots for L. In particular, it is clear
that every finite-dimensional, irreducible or more generally
every indecomposable representation of L which admits a
weight space decomposition with respect to H is H-integral.
The class of H-integral representations is an extremely gen-
eral one. Although there are indecomposable (even irreduci-
ble) representations of Lie (super) algebras which are not H-
integral,>® they have never appeared in any application so
far.

Two H-integral representations p,:L—gl(V;) fori = 1,2
of L are said to be congruent if and only in the representation
V,® V,is H-integral. Clearly a necessary and sufficient con-
dition for this is that the difference of any two weights of
V, & V,is anintegral linear combination of simple roots. The
relation of congruence clearly provides an equivalence rela-
tion on the class of all H-integral representations of L. In
order to make use of this equivalence relation to distinguish
representations, we now indicate how one can label the
equivalence classes of H-integral representations which can
occur for a given simple Lie (super) algebra.

Let 4 = {a,...,a, | be a fixed set of simple roots of L
and denote by C the Cartan matrix of L associated with 4.
For the case of classical simple Lie superalgebras we use the
conventions introduced by Kac.® Since the Killing form is
nondegenerate on H *, the matrix C is invertible. Set
C~'=(g;)and define 4, = 37_, g,a,€H *. Clearly
{A)5.-s4, | forms a base of H * which is “dual” to the base
{@pa, }, thatis, {4;, @;) = §;;, where (.,-) is the scalar
product on A *. If ¥'is an H-integral representation of L
havingA = 2{_, a;4; asaweight—i.e., ¥, # {0}—then we
define the congruence label of V' to be the row vector ¢{ p, V)
given by

cdpV)=(aa,)C~"' modZ x--XZ, (1)
where Z denotes the integers. For certain classes of represen-
tations, in particular for finite-dimensional ones, the con-
gruence classes are completely determined by a strict subset
of the components of ¢( p, V). For Lie algebras see Ref. 2 and
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TABLE I. Numbering of simple roots,Cartan matrix, and inverse of 4 (m, n).

a, a;

a

m

Ay Ay

a

maon

a

m+onl

o—0— " 0—8—0w—0—0

rCartan Matrix

\
2 -1 0
-1 2 —1
0 -1 2
2 — 1 0
— 1 0 1
0 -1 2
2 -1
L -1 2
Inverse
n—m+1 n—m+2 n—m+3 n n+1 —-n —n+1 -1 )
n—m+22n—m+2 20n—m+3) 2n 2n+1) 2(—n) A—n+1) -2
n—m+32n—-m+3) In—m+3) 3n Jn+ 1) 3{—n) —n+1) -3
n 2.n 3.n mn min + 1) m(—n) m(—n+1) —-m
1
| o+l 2n+y) 3n + 1) mp+l) | malin+l) lim+l(—n  (m4(—n+]) —m—1
n 2n 3n mn (m+1)(n) m{ — n) m(—n+1) —m
n—1 2(n — 1) 2n—1) m(n — 1) m+)n-1 m{l — n) m—1){—n+1) —m+ 1
. ! 2 3 m m+ 1 —-m —m+1 v n—m—J

for Lie superalgebras, see Table VIII. Since any other weight

A ' of the H-integral representation ( p, V) is of the form
A'=A +2'_, n;a;, where n;€Z, and the matrix C ~'

transforms coordinates with respect to {4,,...,4, } to coordi-

nates with respect to {a,,...,., }, it follows that the con-
gruence vector of an H-integral representation is indepen-
dent of the choice of the weight A. Finally it is immediate

from the foregoing arguments that two H-integral represen-

tations of L are congruent if and only if their congruence
labels coincide. The Cartan matrices and their inverses for

simple Lie algebras are given in Ref. 7, for simple Lie super-

algebras they are shown in Tables I-V1.
It is useful to point out an equivalent approach to the
classification of H-integral representations of simple Lie (su-

TABLE II. Numbering of simple roots, Cartan matrix, and inverse for B{n, m + 1), n> 0.

(1, aZ am am+| am42 an+m an+m+|
Cartan matrix N
2 -1 0
-1 2 —-1
0 -1 2
2 [ —1
~1]0 1
0 |—-1]2
2 -1 0
-1 2 —1
L 0 -2 24
r Inverse 3
2 2 2 2 2 -2 -2 —1
2 4 4 4 4 —4 -4 -2
2 4 6 6 6 -6 -6 -3
2m 2m —2m —2m —m
% 2m 2(m+1) —2(m+1) —2m+1) —(m<+1)
2 4 6 2m 2im + 1) —2m —2m —-m
2 4 6 2m 2(m + 1) —2m 2An—m—2) n—m-—2
2 4 6 2m 2lm+ 1) —2m 2An—m—2) (n—m—1) )
\
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TABLE III. Numbering of simple roots, Cartan matrix, and inverse for
B(0,n).

TABLE IV. Numbering of simple roots, Cartan matrix, and inverse for
C(n).

a, a; a,_, e, @Q,

o O— e O D @

a o a, , a,

8—O— O <O

Cartan matrix

2 -1 0
-1 2 -1
o -1 2
2 -1
—2|2J
Inverse
2 2 2 2 1
2 4 4 4 2
1|2 4 6 6 3
X 3
2 4 6 =1 {n—1
L2 4 6 2(n—1;| n ]

per) algebras suggested by I. Kaplansky. With the above no-
tation we define W= {Z]_, a,4,|a;€C] and consider W as
an additive abelian group. Let R denote the subgroup of W
generated by the simple roots 4 = {a;,...,a, } of L. Since, for
any AeH *, there exists an H-integral representation of L ad-
mitting A4 as a weight, it is immediate that there is a one-one
correspondence between the elements of the quotient group
W /R and the congruence classes of H-integral representa-
tions of L.

The three operative properties of the congruence rela-
tion readily follow. First, if ¥, and V, are H-integral repre-

C_artan matrix

1 0 0 0 0

-1 2 -1 0 0 0

0 —1 2 -1 0 0

0 0 -1 2 0 0

0 0 0 0 2 -2
| O 0 0 0 =1 2

Igverse -

2{-2 -2 -2 - -2 -2
2 0 0
2 0 2 2 2 2
2 0 2 4 4 4

2n—2) 2n-2)
i 0 1 2 n—2 n—1

[
o
[ SR
&

sentations of L, then V, ® V, is again H-integral and its con-
gruence vector is equal to the componentwise sum of the
congruence vectors of the two factors

cVieVy)=cV)) +c(V,), modZ X--XZ. (2)
Secondly, if ¥ is an H-integral representation of L and
V=V,®- oV, then the congruence vector of each sum-

mand is equal to the congruence vector of V. Finally, if L 'isa
semisimple subalgebra of L such that its adjoint representa-

TABLE V. Numbering of simple roots, Cartan matrix, and inverse for (D (n, m + 1).

a, a,

Ay yom
A, Ay Xy Appm1

OO O @__o._..._o\

O ayimi
2 -1 0 h
-1 2 ~1
0 -1 2
2 -1 0
~1 )
0 -1 2,
R T
-1 2 0
L -1 0 2
Inverse
F4 4 4 4 4 —4 -2 -2 7
4 8 8 8 8 -8 —4 —4
4 8 12 12 12 - 12 -6 -6
4 4m 4m —4m —2m
% 3 4m Am + 1) —a(m + 1) —2(m + 1)
4 4m 4(m + 1) —4m —2m
4 8 12 4m 4m + 1) _4m 4n—m—3) 2n—m-13) 2An—m -3
2 4 6 2m 2m+ 1) —2m 2n—m—3) 2n—m-—2) (n—m—3)
.2 4 6 2m 2{m + 1) _2m 2(n —m —3) (n—m—3) (n—m—1j
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TABLE VI. Numbering of simple roots, Cartan matrices, and inverses for
the exceptional simple lie superalgebras.

70 a,

D2, la) a,@\o a,
[0 1 «a (4] -2 =<2«
112 0}, _r 2 a —a
1|0 2 2(1 + aj) 2| )

F a, a, a, a,

* ® —O0=0—0
[ 0 | 1 0 O_I (2 L—S —4 -2
—1 2 -2 0 113 0 0 0
0 —1 2 -1 32 2 1
L 0 0 —1 2 L1 0 1 2

tion on L reduces to H "-integral representations, then every
H-integral representation of L is an H '-integral representa-
tionon L.

When these properties of the congruence relation are
combined with other simple invariants of representations
such as dimension, index,® etc., it provides a useful and com-
putationally practical tool in determining the decomposition
of tensor products and certain branching rules.

Applications of congruence to the analysis of finite-di-
mensional representations of simple Lie algebras has been
discussed in a previous paper.? We observe now that in its
present generality the concept of congruence of representa-
tions is applicable to the analysis of H-integral infinite-di-
mensional representations of simple Lie algebras. The main
difficulty in illustrating such applications is that the general
classification of indecomposable infinite-dimensional repre-
sentations of simple algebras is far from complete. For exam-
ple, the tensor product of two infinite-dimensional irreduci-
ble representations of 4, having double infinite strings of
weight spaces contains no nonzero eigenvectors of the Casi-
mir operator of 4, and hence no irreducible subrepresenta-
tions. Nevertheless, each indecomposable representations in

this decomposition must be H-integral, and their con-
gruence label must be equal to the sum of the congruence
labels of the two factors.

1ll. CONGUENCE CLASSES FOR SIMPLE LIE
SUPERALGEBRAS

In Tables I-VI we list Cartan matrices and their in-
verses for the simple Lie superalgebras. It should be noted
that, unlike the usual Lie algebra cases, the Cartan matrix
for a simple Lie superalgebras depends on the choice of sim-
ple roots in the root system. Throughout this section we use
the special sets of simple roots specified by Kac.? The parti-
cular choice has the properties of being similar to the simple
roots of the corresponding Lie algebras and containing ex-
actly one odd root.

For all AeH * which satisfy certain conditions listed be-
low, there exist finite-dimensional irreducible representa-
tions having highest weight A. Conversely, every finite-di-
mensional irreducible representation has a highest weight
which satisfies these conditions. For convenience we recall
these conditions. If AcH *, then there exists a finite-dimen-
sional irreducible representation having the highest weight
A = Za, A, if and only if the a,’s satisfy the following condi-
tions®:

(1) a,eZ _ for all even simple roots «;;

(2) the linear combination k of the a;’s given in Table
VIIA is a nonnegative integer;

(3) if the value of & is strictly less than b given in Table
VIIA, then the a,’s must satisfy the additional conditions of
Table VIIB.

Analyzing the range of coordinates of the congruence
vectors (1) for finite-dimensional irreducible representations
of simple Lie superalgebras, we find that the congruence
class is completely determined by a subset of the coordinates
of ¢( p,V'). Therefore, we introduce a new congruence vector
C(p,V) whose components are given in Table VIII in terms
of the a,’s for all simple Lie superalgebras.

One should observe from this list that there are infinite-
ly many congruence classes for the finite-dimensional irre-
ducible representations of the Lie superalgebras 4 (m,n),

C (n), and D (2,1;a) (for some «). The other algebras admit
only finitely many congruence classes.

Let us illustrate the use of the congruence concept with
some examples. First, we observe that the even subalgebra of
any simple Lie superalgebras is an integral subalgebra. This
follows since the Cartan subalgebra of the Lie superalgebra

TABLE VIIA. Linear combinations k and constants b for simple Lie superalgebras G.

G k b
B(0,n) a,/?2 0
B(mv”)vm>0 A, —GQpq — vy, l_iam+n m
D(m)”) a, —Qy = v —d, ., 2_%(am+n—l+am+n) m
D(2,1;a) acC, a#0, — 1 (14+a)~"'(2a,—a, —aa,) 2
F{4) 2a, — 2a, — 4a; — 2ay) 4
G(3) }a, — 2a, — 3a,) 4
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TABLE VIIB. Supplementary conditions applicable when k < b.

G Conditions on a;'s

B(m,n) Ay k1 = " Ty g

D(m,n) pigoy = =0p,, =0 fork<m—2
Qw1 =0, fork=m-—1

D(2,]; a), aeC allg; =0 fork=0

a#0,1 (as+lla= +(a,+1) fork=1

F, allg, =0 fork=0

k#1

a,=a,=0 fork=2

a,=2a,+1 fork=3

G(3) alla, =0 fork=0

k #1
a,=0 fork=2

is, by convention, taken to be the Cartan subalgebra of its
even part. Thus, if we take any finite-dimensional indecom-
posable representation of the simple Lie superalgebra L and
reduce it as a representation of the even subalgebra L, all of
its direct summands must be congruent as L, representa-
tions. This property of congruence has been used implicity
by Hurni and Morel® to provide an explicit description of the
finite-dimensional irreducible representations of SU(M /N )
and also by Marcu'® in his classification of all finite-dimen-

sional indecomposable representations of spl(2,1).

The concept of congruence also provides an aid in de-
termining the summands in the decomposition of a tensor
product. For example, using the notation previously intro-
duced, the finite-dimensional irreducible representation of
A (1,0) are uniquely determined by the value of their highest
weight A = a4, + a,4,. In fact, for AcH * withaeZ ,
there exists a finite-dimensional irreducible representation
V, having A as its highest weight—we label this representa-

TABLE VIIL Congruence vectors C (p, V') = (¢,,¢,,-) for finite-dimensional irreducible representations of simple Lie superalgebras given as linear combina-

tions of the coordinates of the highest weight A = 2a,4,.

G Congrence class determined by

A (m,n) ¢,=a,+2a,+ ~ +ma, +na,, ,+ - +a,,,,,, modm—n

c;=[n+1)/im—~na,,,, modZ
c;=[m+1)/(im—n)a,.,, modZ

B(0,n) all finite representations are congruent
B(n,m + 1) €1 =0y pp1r mod2
n>0
€y = E az.‘+l-i(l_(‘l)m+l)am+n mod 2
i=0,1,-
C(n) ¢,=a, modZ
¢;=a,, mod?2
Dinm + 1) €=y, , +8p 1, mod2

;=2 +4a,+ - +2m+l)a, , +2ma, .,
+ - +2m—-n+2a,, ., +m—n+34a,, .., mod4
c3=2a,+4a,+ - +2m+l)a, ., +2ma, ,
++{m—-n+3a,, ., +m—n+la,,,,  modé

D215 a), o =[1/(1+a)](2a, +a, + a)

aeC,

a#0, —1 ¢ =[172(1 + a)] (- 24, + aa, — a3}
¢y =[1/2(1 + a)] (—2aa, —aa, + a,)

F4) ¢, =2a,, mod2

G(3) all finite representations are congruent
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tion by the pair (@,,a,). With this notation we have that

(0,2 + ) ® (Li + 1)
=(1,3i +3) 82,3 + 1) 80,3 + 3 & (1,3 + ),
4%x8= 8 + 12 + 4 + 8
2+ )+ i+ 1)
=3i+3=3i+}=3+3=3i+} modZ.

The first equation describes the tensor product and its de-
composition, the second equation gives the corresponding
dimension of the representations, and the final equation pro-
vides the appropriate label for the congruence class of each
representation. We observe the congruence label of each
summand in the decomposition is equal to the sum of the
congruence labels of the two factors. This property along
with others has in fact been used by Marcu® to provide a
graphical scheme for decomposing the tensor product of any
two indecomposable representations of 4 (1,0).
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Starting from the standard supersymmetry algebra, an infinite Lie algebra is constructed by
introducing commutators of fermionic generators as members of the algebra. From this algebra a
finite Lie algebra results for fixed momentum analogous to the Wigner analysis of the Poincaré
algebra. It is shown that anticommutation of the fermionic charges plays the role of a constraint
on the representation. Also, it is suggested that anticommuting parameters can be avoided by
using this infinite Lie algebra with fermionic generators modified by a Klein transformation.

PACS numbers; 02.20.Sv, 11.30.Pb

I. INTRODUCTION

Supersymmetry is unique as a symmetry of nature in
that bosons and fermions are grouped together in the same
multiplet.”? This feature is essential for the construction of a
sensible supergravity® theory, but also means that any low
energy theory has to incorporate supersymmetry breaking.
A deeper understanding of how supersymmetry may arise
could certainly shed light on its breaking. The existence of a
fermionic charge in supersymmetry requires that the algebra
be defined by anticommutation as well as commutation rela-
tions. While this allows the evasion of the Coleman-Man-
dula no go theorem,* the resulting algebra is not a Lie alge-
bra and the parameters for infinitesimal transformations are
anticommuting numbers (Grassmann variables). This leads
naturally to an extension of Minkowski space, known as su-
perspace, in which spinors are attached to each space-time
point.? With anticommuting parameters, one has the con-
ceptual problem of nilpotent translation parameters.
Further, all continuous symmetries in nature have been re-
presented by a Lie algebra. It is therefore natural to ask
whether supersymmetry can be represented by a Lie algebra.

In this paper fermionic anticommutation relations are
used to construct the commutation relations of an infinite
Lie algebra. In this algebra successive multiplication by the
momentum operator defines new generators. The algebra
thus obtained has both the Wigner representation of the
Poincaré algebra and the standard supersymmetry represen-
tations. The latter arises when anticommutation of the fer-
mionic charges is used as a constraint. The standard superal-
gebra requires the parameters of infinitesimal
supersymmetry transformations to be anticommuting c-
numbers in order to have a finite closed algebra. With our
formalism commuting c-numbers close the algebra due to
the added generators. However, in order to preserve the spin
statistics relationship it is necessary to modify the fermionic
generators with a Klein transformation.

In Sec. II, an explicit construction of the infinite Lie
algebra is presented. Section III contains the resulting finite
Lie algebra for fixed momentum, which is analogous to the
Wigner analysis of the Poincaré algebra. This section also
contains constructions of massive and massless representa-
tions of the finite algebra with the anticommutation con-
straint. A discussion of the modification of fermionic genera-
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tors by the Klein transformation is in Sec. IV followed by
general discussion in Sec. V.

Il. THE INFINITE LIE ALGEBRA

The superalgebra is defined by the following commuta-
tion and anticommutation relations®?:

[le",/lp 1= i(aﬂl o — 5#;)‘,%» + 6VPJM — 6., Jﬂp 2
[Jy/{ ’Pv] = i((s,uvP/l - 6AVP;L ]’
[P..P,]=0,

(2.1)
[5%2,] =0,

[Sa’J/lv ] = %(Uﬂ.v)aﬂsﬁ)

{982} =ily,C).sP*
Here J,,, and P, are the generators of the Poincaré algebra,
S %a = 1,2,3,4) are the fermionic Majorana generators of su-
persymmetry, and C is the charge conjugation matrix
(C*C=1,C"= —C,C 'y, C= —y]) In this paper
only this simplest algebra is considered although the exten-
sion to the case of a fermionic Dirac generator or multiple
Majorana generators is trivial. In order to form the Lie alge-
bra we consider the commutator

(5%87]=T"* (2.2)

If T was expressible as a linear combination of the gener-
ator of the superalgebra we would have

T = a(ysy,.C )P, (2.3)

where « is a dimensionless number. Note that C, (ysC), and
(¥s7,.C) are antisymmetric and (y,C) and (0,,,C ) are sym-
metric. Using the Jacobi identity (2.4), where

[[4,8].C]={{BC},4} ~{{CA}.B] (24)

= _[[BC)A] - [[CALB), (2.5)

with4 =S5% B=S* and C = §9, it is easy to show that
(2.3) is inconsistent. Therefore, we conclude that T%? is a
new generator. Furthermore, there is no consistent second-
order operator in the Poincaré algebra that 7°# could equal.
For example,

T = alysy, C)*W,, (2.6)
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where W# = — i/2 e#**J, P, is the Pauli-Lubanski vec-
tor,” is contradicted by the Jacobi identity (2.4) with4 = S ¢,
B = 5% and C = S°. (This is proven with an appropriate
Fierz transformation of the y-matrices.)

Because T °f is an independent generator we consider

the commutators with J,.,, P,, S and itself:

[T4,5%] = 2iS(y, C)gs P* — 2ily, C ). P*S”,
[T4,T™] = 2iT"(y, C)sP* — 24T *(y,C),;P*
— 24T ™(y,C)pe P* + 2T (y,C),. P* (2.7)
[T*.P,] =0,

[ Taﬁ"]pv ] = %(va )a& T&B - %(a,uv )B& Téa .
The first of these is constructed using the anticommutation
relation in (2.1) and the identity of (2.4). The rest follow from
the commutation relations in (2.1) and the identity (2.5).
From (2.7) it can be seen that there are new generators S “P,
and T"ﬁPH. Again the commutators of these new members
with all the previous generators and with themselves must be
considered. We exhibit these in Appendix A. From these
relations one must include as new members of the algebra the
operators on the right-hand side of (Al):

S<p,P,, T*P,P

ut v
S°P,P,P,, T%P,P,P,.

Obviously, there are a finite number of generators of the
form S°P, P, and T“P,...P,, added for each order of
commutation. Thus, we obtain an infinite Lie algebra with
generators J,,,, P, S,, T, s*P,, T*P,,...,S°P, P,
T P,-P,,.... The added generators are of a geometrical
series type and the resulting algebra is called an affine Lie
algebra.® Note that the Casimir operators of this algebra are
identical to the Casimir operators of the superalgebra. Also,
it will be shown that the representations of the superalgebra
are those representations of the infinite algebra satisfying the
anticommutation relation in (2.1) as a constraint. Instead of
studying the infinite Lie algebra directly, we will consider in
the next section the finite Lie algebra which results from a
fixed momentum condition. For this to be consistent we
must use the operator W, instead of J,,;, since W, com-
mutes with P, .
Incidently, note with W, alone we have the
commutators
[WH,W~] =e**W,P,
(2.8)

[WHP,,W*] = €*"*WP,P;,

and so on. This forms an infinite Lie algebra with generators
w,, W,P,, W,P,P,,.. similar to the structure above. A
finite SU(2) algebra follows for fixed timelike momentum.It
is important to realize that the analysis of the finite algebra
for fixed momentum is equivalent to an analysis of the Poin-
caré algebra.

IIl. THE FINITE ALGEBRA FOR FIXED MOMENTUM

The algebra generated by W, T, and § * for fixed
momentum is defined by the commutation relations

1416 J. Math. Phys., Vol. 23, No. 8, August 1982

[WHW™] =e“*W,P,

[WHS] = (i/4)e“(0,,)asS PP,

[(T4,W*] = (i/4)e*"**(0,, )5 TP,

— (/4" 04.)as TP,

[§°8°] =T, (3.1)

[T°%,T7) = 2Ty, C)spP* — 2iT*(y,C),z P*
— 2Ty, C)s P* + 2iT%(y,C),, P*,

[T,5°] = 2iSy, C)gs P* — 2i[y, C),s P*S*.
For fixed momentum we have the finite algebra generated by
{W,,T°%,5°] (denoted 4 ,r) and a subalgebra generated by
{W,, T} (denoted 4, 7). A Casimir operator of the super-
algebra (and therefore the infinite algebra) is also a Casimir
operator of 4 . Denoting A4 ;¢ to be the superalgebra and

C (4 ) to be the set of Casimir operators of an algebra A we
have the inclusion relations

C(A,ps) CCAp7s) CClApr)- (3.2)

Also, the irreducible representations of 4,5 correspond to
irreducible representations of 4 ;- in the same way that the
irreducible representations of 4, for fixed momentum cor-
respond to irreducible representations of the Poincaré alge-
bra. For both statements the converse is not true. In fact the
representations of 4, are obtained by enforcing the anti-
commutation relation

(5252} = iy, C)opP" (3.3)
as a constraint on the representations of 4, (as well as the
infinite algebra). Similar to Wigner,® we give an explicit con-
struction of 4, in the rest frame and for mass zero.
A. Timelike momentum (massive particle

representation)
Choosing the rest frame P, = (0,0,0,iP,), we first rear-

range the generators so that the group structure of 4, is
transparent.” Define

L _ (TZ:S_TM) M _ (T23+TM)
? 4p, =~ 7 4P,
N _ _W___?_ _ (T23+TM)
PP, 4P,
12 24
L+ == r ’ 4+ = T_y
2P, 2P,
24
N+:(W+ _ I ) (3.4)
P, 2P,
34 13
L_ - — T N M; = — T y
2P, 2P,
13
o (2 1Y)
P, | 2P,

(note that that W, = l€;,J /Py, W, = 0). From (3.1) with P,
= (0,iP,) one has that the operators L, M, N all commute
with each other and each generate an SU(2) algebra;

[NVuN,.]=+N,, [N,N_]=2N, etc. (3.5)
In other words, 4, = SU(2) X SU(2) x SU(2). Trivially
then, the Casimirs of 4, are given by N?, L?, M?, where
N, =N, £ iN,, etc. We note that , (i = 1,2,3) commutes
with S (@ = 1,2,3,4).
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To construct 4 s we normalize Se=5 */(2P,)"/* and
have the commutation relations

~ - +’ a=1’2
a —_— l a
[Ly,89) = £+ {*, a=34
~ =~ [+, a=24
al __ 19 ¢
5= 25 9T
L.S1=S"' [L_S%=S5%
[L+,§4]=§2, [L—»§1]=§3,
[M+’§ ]= _3'42, [Mi,S'Z]: _gl»

(3.6)

M, S%= -84 [M_S%=-S57
[S'.83=L,, [S:.8%=M_,
[$384= —L , [S'.8%=-M_,
[S'54=(M,—L;), [S°5°]=(L,+ M),

with the rest zero. From the root vector diagram exhibited in
Fig. 1 for these relations, one has that the algebra generated
by L, M and S “ is Sp(4)=C, or, equivalently, SO(5)=B,.
Therefore, the algebra 4, is Sp(4) X SU(2), where SU(2) is
generated by N.

The irreducible representations of 4 ;¢ are determined
by (4,,4,,V ), where (1,,4,) are the highest weight values in
the Sp(4) representation.® Members of the representation are
designated by (1 ,,4,,L,L;,M,M;;N,N,). However, in the fol-
lowing it is shown that the anticommutation relation (3.3)
restricts the values of A, and A, while leaving N uncon-
strained due to its commuting with S

In the rest frame, (3.3) is given by

(SL,8* = — P, {S35%* =P, (SP=0, (3.7)

and all other anticommutators zero. From the Majorana
condition,

S=CS7 (3.8)

—

or
(SYt=—S' and (S})t=S2 (3.9)

We are led to identify the following operators®:

FIG. 1. Root vector diagrams for Sp(4) algebra. The generators are identi-
fied at the head of the corresponding root vector. The axes refer to the
Cartan subalgebra with H, = L, and H, = M,.
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S’ S
4= —, a¥= — s
VP, VP,
(3.10)
2 3
02: S ’ a*: S

B R,

From the commutation relations between J,, and S ®in
Eq. (2.1), we have
1
5"
Therefore, we identify a,{a,) as the annihilation operator for
J, = i( — 1) and a¥{(a%*) as the creation operator for J,
= }( — 1). Defining number operators #, = a*a, and

[Jina,] = Fla, for i= (3.11)

Ny=J,+ ; , N,=J_ —ata,

N_=J_+4aa¥, (3.12)
L:l ng—Hn, M, = m— My
? 2 T 2
and®
L*+M?=3. (3.13)

Equation (3.13) implies that the irreducible representation is
restricted to (L,M ) = (4,0) or (0,}) or, equivalently,

(A1,4,) = (1,0) with arbitrary N. This gives the identification
of n, and n, as follows:

n=0 n,=0 Ly,=1 M;=0,
n=1, n,=1, Ly= —~} M,=0,
(3.14)
ny=1 n,=0, Ly;=0, M,=],
n=0 n,=1 L;=0, My= —1

We can, therefore, replace L and M by n, and n, and arrive at
the set {N,N,,n,n,} or {N,J,,,n,,n,} as the commuting op-
erators. These bases are used by Salam and Strathdee to con-
struct the explicit representations of the superalgebra.? For
completeness we reconstruct this representation. Using Eq.
(3.12) one constructs the N = O representations containing
J = {1,0,0} and the N = ] representation with J = {1,},1,0}.
For arbitrary N > 0 the representation contains

J={N+ LN,N,N — 1] with atotal of 42N + 1) states. The
two states with J = N correspond to (n,,n,) = (0,0) and (1,1).
The parity operation

S$—S' = e"™,S, (3.15)

with the Majorana condition S’ = CS'7, requires that
n=mu/2{or —7/2)and

PlNyN3)n1!n2) =( - 1)n|+"2|N3N3)nl’n2>y (316)
where P is the parity operator. Thus the J = N states are of
opposite parity.

As described above, among the representations of 4 ;.
= Sp(4) X SU(2) only the Sp(4) spinor representation is al-
lowed by the constraint (3.3). Therefore, the only noncon-
stant Casimir is N%. Note from Eq. (3.4) this can be written

N = LW, —i/asC 7.8 (3.17)

J P()
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and can be generalized relativistically by defining

K, =W, — (i/4)SC"7/#y5S, (3.18)

with
2
N? = (K; — @) . (3.19)
P P =(0,iP,)

From the commutators

[K,S%] = — }¥s)asS?P, (3.20)
and

[K..P,] =0, (3.21)

we have (K, P, — K P, }? commuting with all operators S ¢,
J ..., and P, . This is the relativistic expression of the Casimir
operator N2, This operator, with P2, forms the set of Casimir

operators for 4 ;ps.

B. Lightlike momentum (massless particles)

Taking P, = (0,0,p,ip) in Appendix B, all commutation
relations for 4 45 are given, where
S (S'+57) §2— (S* 459
2 bl 2 b
(3.22)
G 828 o._ (5'-5?
2 2
and
Ter = [§257].
Note from Eq. (B7) that the group structure of 4,35 is
G xU(1), where U(1} is generated by T ?*, which commutes

with all generators of 4 ,45. From Eq. (B6) the Casimir oper-
ator is
K:, = —2T»pp? (3.23)

Instead of analyzing G and its representations, we con-

sider the constraint condition (3.3),
(5.8 = —p, (3.24)

and all other {3’ ",$7} = 0. Define creation and annihilation
operators

5! 54
— =a, — — =a*
Vp P
(3.25)
2 o3
2 _, _5 _,.
P P
with
{a,a*} =1, (3.26)
(bb*] =0, (3.27)

and all others vanish. Equation (3.26) leads us to identify
ala*)as the annihilation (creatlon)\operator of a spin up state.
(Note [J,z,S M= lS and [J,,,S*] = gS“) Equation (3.27)
implies the operation of b on any state |1)is zero:

blg)=b*¢) =0 (3.28)
It immediately follows that
»=plbb*] =0. (3.29)

1418 J. Math. Phys., Vol. 23, No. 8, August 1982

In fact, all T except 7 ' vanish. With this result it follows
that K, and K + , defined in Eq. (B5), form the Euclidean
algebra E,. As seen from Eq. (B9),

[K + K 7] =0,
(3.30)

[K3K, 1=K, p

As is shown in Appendix C, this implies that
K, = K_ = 0for a finite dimensional representation. This
is analogous to the W? = 0 condition in the Wigner analysis
of lightlike momentum. In this case the representation is
characterized by generalized helicity A,

- KP _ K _ (W, —4T™)
2

p P p
=Jp—n+1i),

where n = a*a. As is shown by Salam and Strathdee,? the
representation is characterized by two states, | j,) and

| js+ 4n=1), wherea|j;) =0and | j; + L,n=1)

= a*| j;). Bothhave A = (j; + }). Itis obvious that the par-
ity operator acting on these states gives a basis set of the
opposite helicity. It should be emphasized that, as for the
massive case, among all possible representations of 4 45 the
supersymmetry representation obtained above is selected by
the constraint (3.3).

(3.31)

IV. SPIN STATISTICS IN THE INFINITE LIE ALGEBRA

In the previous sections it has been shown that the re-
presentations of superalgebra are equivalent to the represen-
tations of the infinite Lie algebra with the anticommutation
relations among the fermionic charges as a constraint. From
states in the irreducible representations of 4 ., field opera-
tors can be constructed by a standard method.'® The infinite-
simal tranformation of the field operator @ (x) by fermionic
generators is given by

SP=ie?[s%,P], (4.1)

where € is a constant spinor. The choice of €% to be a com-
muting parameter contradicts the spin statistics relation in
the case of fermionic fields @ =. The standard procedure is
to use anticommuting c-numbers as parameters for super-
symmetry transformations. These parameters also anticom-
mute with fermionic fields.

For the infinite Lie algebra we require commuting para-
meters because the commutator of two supersymmetry
transformations should be a generator of the algebra,

[€,S,€,5 ] = €T~ (4.2)
In order to resolve the spin statistics problem in Eq. (4.1), we

use the Klein transformation'® to define a new fermionic
operator,
S'e=il—
where N, is the fermionic number operator. Note that the
fermionic content of S * is not defined; that is, being a Major-
ana spinor, .S “ is a mixture of the + 1 eigenvectors of Np.
However, the Klein operator ( — I)NF has definite anticom-

mutation relations with all fermionic operators regardless of
Dirac or Majorana properties:

1% se, (4.3)
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{(— 1"} =0 (4.4)
and
{(— 1S} =0, (4.5)

where ¥ and .S * are Dirac or Majorana. This is seen by the
following argument. Letting 4 be a Dirac field satisfying

[Ne ] = + ¥ (4.6)
we have
eiﬂNF¢e —iNE _ ot = — 4. 4.7)

This equation implies (4.4) for Dirac fields with definite fer-
mion number. A Majorana field ¥, or ¥, can be expressed in
terms of a Dirac field ¢ by

_ w+¥9) 4.8)
2 G (

or

C
==y (49)
J2i
It is easy to see that Eq. (4.7) and therefore (4.4) is valid for
Majorana fields without definite fermion number.
With these new operators, Eq. {4.3), we have

&y =[S y) = —e(Sey)(—1)'F (4.10)
for fermionic fields 3. Therefore, we have
[e2S ' gfS"# ) = efT (4.11)

because ( — 1)*"F = 1. In terms of operators we have the
equation

[S'2S8] = TF=T""®, (4.12)
The constraint is given by
(987} =i(y,C)pP* (4.13)

The infinite Lie algebra should be modified using S’
Equations (2.1), (2.7), (3.3), and those in Appendix A are
altered by the replacement

S a__.)S ILZ’

TPT°f, (4.14)

This modification alters neither the structure nor the

physical content of 4 ;. Note that the Majorana condition
for S’ implies

S =i- 1) CST=CS"T. (4.15)

Therefore, the sign change in the constraint Eq. (4.13) does
not alter the definition of creation and annihilation opera-
tors in Eq. (3.10).

V. CONCLUSION

The standard supersymmetry transformation is expon-

entiated'? using infinitesimal anticommuting parameters.
We have avoided this by constructing an infinite Lie algebra
and using the Klein transformation. The anticommutation
relations of fermionic generators becomes a constraint on
the representations of the infinite Lie algebra which yields
the standard supersymmetry representations.
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While anticommuting parameters are natural in super-
space and the superspace formalism is convenient for con-
structing field theories, it is extremely difficult to compre-
hend a physical reality in such a space. Our formalism
replaces this difficult concept with an infinite Lie algebra
which uses commuting parameters. This new viewpoint of
supersymmetry may help in understanding the nature of the
symmetry, its breaking, and supergravity.
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APPENDIX A

Consider the commutation relations for
{§°P,,T*"P,} which appear on the right-hand side of Eq.
(2.7). These operators are generators for the infinite Lie
algebra.

[$eP,.SPP, | = T*P,P,,
[SeP,,T#"P; ] = —2iS*(y,C),.P*P,P,
+ 20y, CpaS "PPE,P;,

[T*P,,T™P,] = [2T™(y,C)sP*
— 24T%(y, C),sP*
— 2T (,C)so P
+2T%(y,C),.P*|P;P,,
[S°P,.,8%]=T*P,,
(A1)
[T*4P,,S"] = 2iS<(y,C),,P*P,
—2i(y,C),,SPP*P,,
[S°P,.P,]=0,
[T°°P,.P;] =0,
[S°P,,T#1] = —2iSP(y,C),,P*P,
+ 2i(y,C)z S"P?P,,

[T"BPA,T”‘S] = [2T"(y,C)spP* — 2iT’5"(7/“C),73P",

— 2iT’7B(y#C)§aP“

+ 2iT‘5”(7#C)WP“]P,1,
[SaPI"J}«V] = l‘sa( - 5&#1)1/ + 6#VP11)
+ %(U/lv )aBSﬁP#;
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[TaﬂP#)J/{v] = lTaﬁ( - 5iqu + (SvaA)
+ 404 )as TsP,

—Howlps Tsa by
Note that Eqgs. (A1) are obtained from Eq. (2.7) by multiply-
ing by the appropriate momentum operators. Equation (A2)

has no new generators on the right-hand side.

(A2)

APPENDIX B: MASSLESS CASE P, = (0,0, p,ip)

Introduce the variables

2 2
(B1)
3= <S3—S‘)’ S4 ( S“—Sz).
2 2
With the constraint equation (3.3) we have
(5154 = —p,
[§1’§2} _ {§1,§3} _ {§2,§4}
= {525 =(5°5% =0 (B2)

In terms of the S variables the commutators T4 are given by
T2 = [gv:,gz] —_ %(le L TH T84T,

’7\113:%T13’
TM:‘%(_ T12_+_ T14+ T23+ T34),
(B3)
’7\23 :}‘(le_*_ TW LT _ T,
’7\124:%T24’
T34 :}‘(le_ THL T2 4T
Also,
W,={n+iup, Wi=U0p,
(B4)
W,= — s+ iTp, Wi=ilJ

Expressing the components of K, [Eq. (3.18)] in terms of 7’
amd W,

K, =W, —\sT¥ =W, -T2,

K =(W_+4T")=(W_+T7)
(BS)

K3 — W3 _ }‘(Tld + T23) — W3 _ %(?114 _+_ /7\*23),
K =iWy— - T"?+T%)
—iW,— 4T -T™),
and the Casimir operator is given by
K2, = — 2K, P = — 2T )2 (B6)

The commutation relations for 4 435 are given by the
following:

T2 commutes with all S and W' as seen from Eq.
(B6), (B7)

K. ,K_ commute with all :S\”", ?’“ﬁ, (B8)
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KK 1= —2T% (B9)

(KiK. ]= %K, p (B10)
[K;;/P,le] — le,

(B11)
[Ks/Py%M] - _ _71\34’
[K;/pS'] =15,
[K:/pS?] =452,

(B12)
[Ks/P»§3] = - {\3’
[K,/pS*) = — 15,
[TAS'] = —2p5%, j=1,2,3

(B13)
[TYS*] =255, j=2734
[TUT%]) = —2oT'%, k=23
[T™T#] =2pT#, j=23

(B14)

[’7\1 12,’7\~ ¥ = 2p’]\~23,
[’7‘~ 13”7\24] — 2p’7\23’

the rest is zero.

APPENDIX C: PROOF THAT K, = 0FOR FINITE
REPRESENTATION OF E,

Consider the Euclidean algebra E, commutation rela-
tions for (K ,K_,K;3}:

K. ,K_]1=0, (C1)

KoK, = £K., (C2)
where K7, = K_. The Casimir operatoris K_K , and Eq.
(C2)implies K | (K _)is the raising (lowering) operator for the
K, eigenvalues. Consider the minimum K eigenstates,
|k min »» defined by K _ |k, ) = 0 and K|k, )

= Kein |Kmin »- From (C1),

K_K, |ky.)=0, (C3)

and therefore K_K | = O for the entire representation be-
causeitisa Casimir operator. Thisimplies K, = K_ = Ofor
any finite representation.
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We consider the two-dimensional nonlinear Schrodinger equation of Benney—Roskes. It is shown
that the equation admits superposition solutions of solitons and various ripplons.

PACS numbers: 02.30. + g

1. INTRODUCTION

Recently, it has been found that certain nonlinear evo-
lution equations simultaneously admit two different types of
solutions, solitons and ripplons (simple similarity type ex-
plode-decay mode solutions).'® Soliton solutions represent
propagating waves with constant speed and constant profile,
whereas ripplons represent more dynamical waves whose
profiles grow and then decay with time. Ripplon solutions
can be expected to play important roles in explaining dyna-
mical phenomena such as explosions.

In two-dimensional (2D) systems, we know three equa-
tions whose ripplon solutions are known explicitly. They are
the 2D-KdV (or the Kadomtsev-Petviashvili) equations, >
2D cubic nonlinear Schrédinger (NVLS') equation,® and the
2D-NLS equation of Benney—Roskes.>® The last equation is

written as®'*
iu, — Pu,, +yu,, + Suruu — 2wu =0, (1.1a)
Buw,, + yw,, — Bb(u*u),, =0, (1.1b)

where B, 7, 6 are real constants. Throughout the paper sub-
scripts x, y, ¢t denote partial derivatives.

By using the technique of Hirota tilinear theory, Naka-
mura recently derived 1D-like ripplons and the superposi-
tions among themselves.’ It was also shown that there exists
simple transformations which transform arbitrary propagat-
ing-wave solutions with permanent profile to the explode—
decay mode (ripplon) solution, which implies that if we know
multiple solitons, multiple periodic waves, multiple lump
solitons, and so on, we can derive explode—decay mode mul-
tiple solitons, multiple periodic waves, multiple lump soli-
tons and so on.® Then the question arises whether superposi-
tion between ordinary waves and ripplons is possible. The
purpose of this paper is to show that this superposition is
actually possible. For this purpose, we use the technique of
Zakharov—Shabat inverse spectral transform (IST) method.
Anker and Freeman have already applied the scheme to this
equation and derived soliton solutions."* We will show that
the same IST scheme can generate ripplons. Then from the
linearity of the IST scheme itself, it can be shown that the
properly superposed state of solitons and ripplons is also the
solution.

In Sec. 2, we briefly review the IST formalism and in
Sec. 3, we derive solitons, lump solitons, ripplons, and lump
ripplons and show that all of them can be superposed.

® Present address: Physics Laboratory, Osaka University of Foreign Stu-
dies, Aoh Madani, Minoo City, Osaka 562 Japan.
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2.I1ST FORMALISM

For the convenience of the later calculations and nota-
tion, we review very briefly the Zakharov-Shabat IST
scheme.'* Following them, we introduce the Volterra opera-
tor K and integral operator F by

I?z/i(x)z jw dz K (x,2)Y(z), ?‘z//(x)zfj dz F (x,z)¥(z), (2.1)

where K (x,z), F (x,z) are (n,n) matrices with their (i, /) element
denoted by K;(x.2), F;;(x,z) respectively, ¢{x) is an (n,1) ma-
trix, and it is assumed that (1 + K )™ ' exists. We consider a
pair of commuting operators M, and M,

M M=MM, — M,M, =0, (2.2)
and the transformation from M, to M, by

MO+K)—(1+KM, =0, (i=12), (2.3)
leading to

[M,.M,] =0, (2.4)

which provides nonlinear evolution equations with respect
to the variables K ;. The explicit solutions for the variables
K; in turn can be given by solving the integral equation

F(xz)+ K (x,2) + des K (x,5)F(s,2) =0, (2.5)

where f (x,z) is determined from the relation
[FM ] =0, (i=12) (2.6)
We consider the case where Eq. (2.6) has solutions in the
form of separation of variables

Fixa)= 3 X7 (2) 2.

i=1
where f;, f; are appropriate (n,n) matrices. By assuming the
form of K (x,z) as
N p—
K(xz)= Y Kix)fz), (2.8)

i=1
and inserting Egs. (2.7) and (2.8) into Eq. (2.5), K, (x) and thus
K (x,2) can be solved as

(K. Ky)= — (frfW)L T (2.9a)
N _ .71
K(xx)= Y Ki{x) filx)= — (fi-fy)L 7| i }(2.9b)
! Sn
[(i, j)block of L ]=6,1 + J ) dsfi(s) f(s), (1<i,j<N).
. (2.9¢)
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Here L is an (nN, nN ) matrix consisting of N 2 blocks of (,7)
matrices. In the case of N = 1 and simple F of the form

0, flz(x))(ﬁl(z), 0 )’

Fxz2)=f(x)fle) = ( 0, 722((;)

1), 0
Voilx) 10)

we have
Kion) = [1 = [dssabFuls [ ds st

FraltFonlx) f ds fuslFoalsh — fuaTlx)
X * . .
— falc o), for i) f ds fulslFinls)

) (2.11)

Expression (2.9) shows that so far as the solution F of
Eq. (2.6} is obtained in the form of separation of variables,
Eq. (2.7), the superposed solution exists and is given by Eqgs.
(2.9(b)) and (2.9(c)) . In the next section we will show that all
of the solitons, lump solitons, ripplons, and lump ripplons
can be generated in the form of Eq. (2.7), thus superposition
of these are also a solution.

3. SOLITONS, LUMP SOLITONS, RIPPLONS, LUMP
RIPPLONS, AND THEIR SUPERPOSITIONS

First we follow the procedures of Anker and Freeman
and derive ordinary solitons.'*> However, for the sake of sim-
plicity, we take the simplified boundary condition
u(x = + o) = 0instead of their nonvanishing boundary
condition u(x = + «)#0. We choose a pair of commuting
operators M, M,, as

0
Mlzﬁoay_'-(?(/; ,},)ax’ M2:aoaz +3§, (31)
2

where a,, B,, 7, ¥, are scalar constants (3, and S, 7, ¥, are
completely unrelated, different constants). Equation (2.3)
then determines M,, M, as

M, =M +(y— 72)( “0521 562),

=~ gll,xé‘lz.x)

=M, +2 , 3.2
My =M+ (§§ 62
£=K;(x.2)|,_ . (3.3)

Then Eq. (2.4) is written explicitly for each matrix ele-
ment as

F(x,Z)=(

“\exp[milx + B¢ vy — ag 'mit) + 15 1,0
=/ixVfi)

—Qo(V1 — V)12 + (V1 + V2 120x + 286E 12,xy

=2y — 7 al6n — €22 =0, (3.4a)
oY1 — V2o + (V1 + Y2610 + 2Bokarny

= 2{y1 — 72)ul6 11 — ) =0, (3.4b)
Bols 11+ 2y + 4vi + v + €20

+Hin —¥)lE — €)= 0, (3.4¢)

Bolé11 — &)y + Myy + 7)é1s — 20,

+ iy — 7)€ + £z

+2(v1 — 72612621 = 0. (3.4d)

We set the value of parametersas y, = — ¥2(=%,). Then Eq.
(3.4c)gives &)y + £ = ¥obr, 61y — Epp = — Bop,, where we
have newly introduced the quantity ¢ = & (x,t ). Further, by
considering the coordinate transformation'

X=B""Box —ivoy) Y=9"Bex +ir,y), (3.59)
_1( X Y _i( X Y
x _Eo(bu/z + 7,1/2)’ y —2_},0(31/2 - 7,1/2)’
and choosing the parameter values as

ay=pF5= —4/5, (3.6)

and under the condition y,¢ = (y,¢ )*, by denoting 28V xx
=w, £1,=u, ({2, =£ 1), we see that Eqs. (3.4a-3.4d) reduce
to Eq. (1.1) with subscripts x,y replaced by X,Y. For simpli-
city, we consider & > 0, which gives pure imaginary 8, or
Bo = i|B,|. We also take real ,. In our present calculation
X,Y are physical variables and should be real. This and the
above parametrization for 3, ¥, imply both x and y to be
pure imaginary, then each integral path in the previous sec-
tion should be interpreted as being on the imaginary axis
instead of usual real axis [ ds— § ' ds. We note that this
formal modification of upper bound of integration
+ 00— + oo does not affect any of the remaining argu-
ments and the whole scheme holds in the same manner as the
usual real x,y case.

Now we consider explicit solutions. From Egs. (2.6) and
(3.1) we have equations for F as

Yo 0 ) (}’0 0
F. +F =0, (3.7
L N eV ° (3.7a)
aF, + F,, —F,, =0. (3.7b)
The simple exponential-type solution to Egs. {3.7) is given by

0, eXP[mix +nz+B4 1?’0(”: —mly+a; l(”? —mit+ 7?01] ) 318
exp[mix +niz + B g volm; —n}ly + ag '(n2 — m))t + 76:1,0/° (3.82)
=(0, exp[m{x — By vy — ag 'm;t) + g ])(

Here m;,n;, 75,,m;,m],7¢; are arbitrary complex constants. Via Eq. (2.11), this gives the 1-soliton solution

u=Kplxx)= —expV:iV/ {1 — [(m, + n})m; + n,)] " 'explD)},
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exp[niz ~ B 'vov +ag 'njt)], 0
—1 —1 4 (38b)

0, exp[ni{z+Bs Yoy + ag n;t)]
(3.8¢)
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Ni=(m, +nx+ B4 17’0(”; —my + ao_l(”? - m?)t + 70;5
Di=N; + (m] +nilx —Bg volni — mily + ay™ ' (n*> — m)t + 05, (3.9)

Here for the integral ' ‘= ds in Eq. (2.11) to converge, we take the parameters as Im(m, + n;)> 0, Im{(m + n,)> 0. On the
other hand, Egs. (3.5) give the relation

x =B Yoy +elx+B85 Yoy +c)=02BB) X +¢,) + 2BV (Y +5,),

=B B YA+ de, + (1 — iel, 6=} Boy'?[(1 — de; + (1 + ile,). (3.10)

By using Egs. (3.5) and (3.10) and choosing the parameters as

mi= —m#, = —n¥ m=ni, 3.11)
Eq. (3.9) can be rewritten in the variables X, Y as

u= —exp(n,)/[1+exp(n, + n¥ + Tix )]s
7=kX+ 1LY+ w1+,
ki=[(1—iim, + (1 +i)n,1/(2B, B,
I;E[(l +im; + (1 —in, ]/(2&)?1/2),
w;=i(— Bk + iy},
expl — Ti J=(k; + k ¥})2B8/8 + (I, + 1¥)27/8. (3.12)
This is the 1-soliton solution of Eq. (1.1).

Next we consider generation of lump solitons. Certain lump solitons to the present equation were derived by Satsuma and
Ablowitz by taking limiting procedures of the known soliton solutions.'* Here we derive more general types of lump solitons.
Since Eqgs. (3.7a) and (3.7b) are linear, arbitrary derivatives of F with respect to various parameters [such as m;,m/,n;,n; in Egs.
(3.8)] and their linear combinations are again the solution to Egs. (3.7a) and (3.7b)."® For our example, we consider only the
simplest of such series of arbitrary higher-order derivatives. We take the solution

F=(d, +4d )(0: (m; + n))exp[mx +n.z+ B g Voln, — my + ag '(n? — mt + 1, ] )

S T INmy + nexpmix + niz 4 By ‘volm! — nlly + ag 'ni — mt + 93], 0/
0, 4, (m; + njlexp[m;x — By yom,y —ag 'mit + 74
~\0,lm! + nexp[mix + B yomiy — a5 'm* + 15,1, 0
exp[niz—Bqs Yoy +ag 'njt)], O -
( p[niz —Bo 7~oly o ,1)] )Efﬁf(x)f?(z). (3.13)
0, exp[nz+Bs voy +ag nt)]
Via Eq. (2.11), this gives the lump 1-soliton solution
u= —[14+(m +nx—Bqs Yoy — ZaO_'m,.t)]exp(Nf)/[ 1—(x—Bg 'vop—2a, 'myt)
Xx+B4 l}/Qy—ZaO_'m,'t)exp(Df)}, (3.14)
where N3 and D? are the same as in Eq. (3.9). By using Egs. (3.5), (3.10), and (3.11), solution (3.14} can be written in the
variables X,Y as

w= = {1008k k00— ] [ ST i 1= e |
X+ XPBtP S(Y+ YY)
XCXP(m)/[H[a( t X)) | A B ]CXP(nan?‘)l,
88 8y
Xi= BBk, — k¥ + v +IM]
Yﬁ‘z—y”z[ﬁl/z(ki+k}")——i7’1/2(li—l}")], (3.15)

where k;, I;, 77, are the same asin Eq. (3.12). In the special limit of k,, /; being pure imaginary k,=ik R l,=ilg; (kg;s Ig; = real),
by denoting exp (77,;)= — p;i, lump 1-soliton solution (3.15) becomes
u=p;explilkg X + Ip; Y + wg;t)]/{1 + 87 '5pi*p} [B X + 2Bkgt)? + y Y — 2711“[)2] ],
wri =Pk % — V&
Equation (3.16) is the lump 1-soliton solution previously obtained by Nakamura.® The lump solitons considered by Satsuma

and Ablowitz are this type of solutions, whose denominators are always finite polynominals of x,y,z and constants.
Now we consider generation of ripplons. Equation (3.7) have the following solutions:

(3.16)

1424 J. Math. Phys., Vol. 23, No. 8, August 1982 Akira Nakamura 1424



0, (t+t) ‘explac[(x —Bo Wo¥ + X — 2+ B¢ Yoy + 2]/ 4t + )] + Ooi} )
Flez) = ((r+ ) texplao[x + B oy + xiF — (2= B Yoy + ZP)/[4e +1)] + 064, 0
0, (¢4 ;)" "explaolx — Bg Yoy +x,/ 4t + 1)] + o) )
- ((t +1,)7'explagx +Bs oy + X1/ (4 +1)] + 641, O
(e e ror A/ Q ) B ) 7, 3.17)
0, exp{ —aolz+B¢ Yoy +2z;)/[4r + ti)]}
Via Eq. (2.11), this gives the 1-ripplon solution
u={(t+1)"'exp(N;)/{1 — da; 'exp(D )},
N;an[(x —-Bs l7’oy +xi)2 —x+Bs Yoy +zi)2]/[4(t +4)]+ Oo;
DI=N7+ao[lx+B5 Yoy +xif —(x =B85 Yoy + 21/ [4t + 1.)] + 65, (3.18)
Here for the integral = ds in Eq. (2.11) to converge, we take the parameters as Im(x; — z/)> 0, Im(x] — z;)> 0 for

ay/(t + t;)>0and Im(x;, — z]) <0, Im(x; — z;) <O for ay/(t + ¢;) <O.
By using Egs. {3.5) and (3.10} and choosing the parameters as

X{= —xt zi=—2 04, =08, (3.19)
Eq. (3.18) can be rewritten in the variables X,Y as

u= —(t+ ti)_lexp(ei)[l +expll; + 0F + 7ix )] -
X+ X)) i(Y+Y,)}
T4+t —B) Me+ny
Xi=1BoB8' 7 [(1 4+ imx; + (1~ i ],
Y=1 8oy (1 — i, + (1 + i)z, ],

, w12 . w12
EXP( — Tipxi)= L) ;;;Xi) i (o0 -;ng,.) I’
This is the 1-ripplon solution first derived by Nakamura through the Hirota bilinear method.’

In a manner similar to the derivation of lump solitons from the ordinary solitons, we can generate lump ripplons from the
ordinary ripplons. We take the solution for F as

F(d. + )(0, (t+ 1) "x; — zi)explao[(x — Bo vy + X)) — 2+ Bs vy + 2] /[4t + 1,)] + 60:) )

P\ 5) T — zexplag[(x + Bo Yoy + X1 — (2 —Bs vy + 2]/ [4E + 1)) + 65,1, O

0, Oy (1 +1)7"(x; — zj)explaolx — B¢ "voy + X2/ [4le + 1,)] + @oaix,/2 + B, }

E(ax;(t + ti)—l(x: - zi)exP[ao(x +Bq 17’0}’ +X;)2/[4(t + ti)] +apaix;/2+ 561}» 0)

i »

(3.20)

exp{ —aolz — B¢ vy + 2/ [4t +1)]}, O -
( i 2 =f1lx)fz). (3.21)
0, exp{ —aolz+ B4 Yoy +z,) /[4(t+ t:)] }
Here we set 0y, = @a,x,/2 + 6y, 04, = aga;x!/2 + 8}, witha,, a}, Oy, 64, representing arbitrary constants whose deriva-
tives with respect to x;,x; vanish. Via Eq. (2.11), this gives lump 1-ripplon solutions as

u=(t+ ti)_l{l + (x; _zi')[x —-Bq I7’0}’ +x; +a;(t+ ti)]/[z(t+ 4] Jexp(N )/

(1—(+8)[x—Bs Yoy +x +alt+ 1)} [x+Bs yoy + x| +aj(t + 1) ]exp(D})}, 3.22)

where N, D] are the same as in Eq. (3.18). By using Egs. +(Y+ 7Y, +B,(t+ )2/v]explf; + 6%},

(3.5), (3.10), and (3.19), the solution (3.22) can be rewritten in - o o

the variables X, Y as I_Y'iElzgllz[(Xf +XN/B'P +ilY, — Y/,

u= = () 14— Vsl — X — XVB 2+ (Ve + YR/,
B(r + 1, A=18B"[(1 +ila, + (1 —i)a],

X1 — )X, — X¥/B"> + (1 +i\Y, — Y /"]

X[(1 =X +X, +4,1)/8" here X,, ¥,, 6, are th in Eq. (3.20). This is th
L AT AT 2Bl - where X, Y,, 6, are the same as in Eq. (3.20). This is the
+ (1 4+ )Y+ Y, + B,2)/y"*] {exp(6,)/ lump 1-ripplon solution of Egs. (1.1).

{1 + Lz [(X + X, +A4,(t+ 1,)%/B We choose'the parameter a; = — a* so that 4, and B,
8(r + 1) become real arbitrary constants. In the special limit of X, Y,

BiEworllz[(l —i)a;, + (1 +i)a;], (3.23)
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being real or X;=Xp,, Y,=Y,, the present lump 1-ripplon

!

becomes
_ —1 X+ X, 0¥+ Vi) /
==l i) °"p[4(t+t,-)(—ﬁ)+ Wy +0°"]
P - 2
[1 g Tl X+ A+ 18

+ (Y + Y, + Bi(t + 2.))/7)expl(6,; + eg,.)] . (3.24)
where Xg,, Yz, 4;, B, (6,,) are real (complex) arbitrary con-
stants. This is the simplified lump 1 — ripplon solution first
obtained by Nakamura.®

So far we have obtain 1-soliton, lump 1-soliton, 1-rip-
plon, and lump 1 -ripplon in the framework of IST formal-
ism. As mentioned earlier, this implies that all of these can be
superposed. It is seen as follows. Since Egs. (3.7) is linear for
F, obviously arbitrary linear combinations of the solutions
are again the solutions for F. Thus we can take the general
superposed solution of F as

Ng _ Ng+ Nig
Flxz)= ¥ fimfila+ X fixfie
i=1 i=Ng+1
Ng+ Njo+ N,
+ Y fixfiE
i=Ng+ Njg+ 1
Ng+ Nig+ Np+ Njp
S YY)
i=Ne+Npe+ N+ 1
Here f3, f3; £, F f7, f7 and ", f" are the same as those
given, respectively, in Egs., (3.8), (3.13), (3.17), and (3.21).

(3.25)
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The values of various constants can be taken arbitrarily dif-
ferent for each i.

Then, at least in principle, X (x,x) and thus
u(u(x) = K (,{x,x)) can be solved by Eqs. (2.9b) and (2.9¢).
This solution corresponds to the superposition solution of
N, -soliton, N, -lump soliton, N,-ripplon, and N, -lump rip-
plon.
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Korteweg-de Vries surfaces and B4cklund curves®
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It is shown that every point w(€) on the curve y, (€) representing a 1-parameter family of integrable
equations containing a given rth Korteweg~de Vries (KdV) equation w(0), also belongs to a
different integrable curve I', (¢,v). Symmetries of the resulting surface make it possible to
construct a curve of Bicklund transformations, that is, infinitesimal automorphisms, of points on
¥, (€) starting with the usual infinitesimal automorphisms of w(0). In addition, we obtain four new
Bicklund transformations of the second order for all higher KdV equations.

PACS numbers: 02.30.Jr, 02.30.Qy

1. INTRODUCTION

The main results of this paper concern the existence of a
second parameter for higher KdV equations (see Ref. 1) and
infinitesimal automorphisms for equations associated with
the first parameter (see Ref. 2).

We begin by explaining this in the simplest case of the
KdV equation itself,

u, = 6uu, —u,,, =X,(u). (1.1)
Here the subscripts ¢ and x denote partial derivatives with
respect to f and x, respectively, and X, (4) corresponds to the
rth flow in the hierarchy of KdV equations which can be
given by the Lax representation

L, =[PL], (1.2)
where
L= —§£%24+u, £=0d/0x, (1.3)

and P is an isobaric differential operator of order 2r — 1,
r>l.

Now, Gardner observed {see Ref. 3) that is w satisfies
the Gardner equation

w, = bww, — W,,, + 66w w,, (1.4)
then u = (g(€)) (w), given by the map

gle)w—u =w + €’ + ew,, (1.5)
satisfies the KdV equation (1.1). Originally, this fact had pro-
vided the shortest proof that the KdV equation has an infi-
nite number of conserved densities H ou),q=12,.,thatis,
equalities of the form

OH (u)

ot

which follow formally from (1.1). Here H_(u) and J, (1) are
differential polynomials in #, i.e., polynomials in # and its x
derivatives 4 = 3/u/dx’. This one-line proof consists of in-
verting (1.5):

w=3 h,(ue,

=dJ,(u), J=3d/dx,

then substituting this expresssion in (1.4) rewritten in the
conservation form

*Supported in part by NSF Grant MCS 800 3104 and the US Department
of Energy.

* Permanent address: Department of Mathematics, University of Michi-
gan, Ann Arbor, Michigan 48109,
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Iy= AB3w? — w,, + 26w?),
at

and finally equating powers of € in both sides of the derived
equality.

Let us look more closely at the Gardner equation (1.4).
First, notice that all conserved densities H,(u) of the KdV
equation generate, via the map g(e) (1.5), conserved densities
H_((g(€))(w)) of the Gardner equation. Thus the Gardner
equation is integrable, meaning: has an infinite number of
conserved densities. Secondly, the Gardner equation de-
pends polynomially upon € and therefore can be considered
as a curve in the space of all {evolution) equations, and an
integrable curve at that. For the points on this curve we can
use the suggestive notation y,(e€). Thus the KdV equation is
just the point 7,(0), and we can consider it as the natural base
point of the curve y,(€). In general, when an integrable sys-
tem is included in an integrable family, we call such family a
deformation of the original system. Moreover, we can and
shall take one further step: When every member o of an
integrable family ¥ is included in a one-parameter integrable
curve o€} which intersects 2 only at o = ¢(0), we call the
new family v, ; ole) = 2 (€) a deformation of 2. Thirdly, the
Gardner deformation (1.4) has one additional property: it is
supplemented by the map g(e) (1.5) which is regular in € and
sends all points on the curve y.(€) into one point ¥,(0), if we
agree not to distinguish between equations and their solu-
tions. Such an agreement is certainly legitimate if we keep in
mind that our evolution equations represent just a tradition-
al way of writing evolution fields (see, e.g., Chap. I of Ref. 4).
In general, we call a map regular in €, f(€): £ (€} >3 (0) = 3,
such that f(0) = Id, a reduction. It should be immediately
noted that reductions do not have to and often cannot ac-
company deformations.

The alert reader might have remarked that the above
definition of deformations must be augmented by a device to
exclude curves with systems which are mutually “equiva-
lent” in one sense or another, say, under changes of varia-
bles. Another source of triviality may occur when, for a giv-
en evolution field 0(0), the increment o{€) — o{0), considered
also as an evolution field, commutes with ¢{0) or has an infin-
ity of conserved densities in common with it. Fortunately,
for all systems considered in this paper, the nontriviality of
deformations follows from a few general statements. This
will be done in the last Sec. 5, in order not to interrupt the
presentation.
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To sum up: The KdV equation allows the deformation
(1.4) together with the reduction (1.5). In reality, even a more
general phenomenon occurs (see Ref. 2): one can deform
Surther the curve (1.4). Namely, if

where

sinh(2evp) N sinh’(evp)
2ev e
then w = (G (¢,v)){p}, where the map G [€,v) is defined by

C=Clevp)= (1.7)

Glev)p—w = Clev,p) + p., (18)

satisfies the Gardner equation (1.4). Notice that on the re-
sulting surface I',(¢,v), consisting of the points (1.6}, those
points with v = 0 form the curve ¥,(€) and the map (1.8)
provides a reduction of the surface I';(€,v) onto the curve
1213}

Now, it was proved in Ref. 2 that there exist curves
7.(€), with the same reduction (1.5), which deform all the
higher KdV equations. Our first problem is, then: Are there
any analogous surfaces I, (€,v) for r > 2, preferably with the
same reduction (1.8), as for » = 2? The construction of ¥, (€)
in Ref. 2 was based on the fact that for every #, the rth KdV
equation is a bi-Hamiltonian system and the reduction (1.5)
can be interpreted as a “‘canonical transformation” (see, e.g.,
Ref. 5). Since the Gardner equation is not bi-Hamiltonian
anymore and (1.6) is not even Hamiltonian, the reasoning
based on the Hamiltonian formalism is no longer applicable.
On the other hand, note that G (0,v) = g(v). This implies that
any construction of the surfaces I',(¢,v) will provide, as a
bonus, a construction of the curve y,(€) as I, (0,€). Converse-
ly, if we are to build I, (¢,v) starting with ¥, (€), we should
first of all find a non-Hamiltonian construction of y, (€} such
that the method can be deformed into construction of
I {ev).

This is exactly what we shall do. Here is the clue of how
to proceed. Recall that, parallel to the hierarchy of the KdV
equations (1.2) and (1.3), there is another hierarchy of Modi-
fied KdV (MKdV) equations (see, e.g., Ref. 5), given by (1.2),

with
S T

for example, MKdV, has the form

v, = 6U2UX T Uxx (1.10)

The main relation between the two hierarchies is pro-
vided by the map M (“Miura transformation”)
Mwv—u =0 +u,, (1.11)

which maps solutions of MKdV, into those of KdV,.
If we now put (Ref. 2, Sec. 5)

v=€e(w+ €2/2), (1.12)

i=u—e"%/4, (1.13)
then (1.11) turns into

i =w+ €w + ew,, (1.14)

which is almost (1.5); a few more remarks will drop the tilde
from #. We shall do this in Sec. 2. In Sec. 3 we construct: (a)
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curves ¥, (€) which deform the MKdV equations, (b) their
reductions g(): y,(e}—7,(0), and (c) the deformation of the
map M, M (¢): y,(€}—>v,(€). Starting with the map M (¢), in
Sec. 4 we adapt our arguments of Sec. 2 to depend upon the
new parameter v. This enables us to construct the desired
surfaces I, (¢,v) together with their reduction G (¢,v).

Let us now turn to our second problem, that of exis-
tence of Backlund curves. Note that the Gardner equation
(1.4) depends upon €” while the reduction (1.5) depends upon
€. Therefore, we obtain a “Bicklund transformation,” that
is, an infinitesimal automorphism, of the KdV equation,
simply as

b (€)= g — €)ogle) . (1.15)
It was laboriously proved in Ref. 6, Chap. I1I, that (1.15)
provides the Bicklund transformation for all higher KdV
equations as well. We give a very short proof of this fact in
Sec. 2.

Now observe that (1.6) depends on v whereas the re-
duction G (€,v) depends on v. As before, one gets a Backlund
transformation of the Gardner equation:

Beyv)=Gle, —v)oG (e,v) 7}, (1.16)

which deforms b (€) since b (¢) = B (0,€). Combining (1.5} and
(1.16), we obtain four new Bicklund transformations of the
KdV equation:

8l £ €)°G (e, — VoG (€,v) 'og( + €)7". (1.17)

As might be expected, equations from I, (¢,v) also de-
pend upon 2, for all 7. We prove this in Sec. 4. This will
guarantee that Biacklund transformations {1.16) and (1.17)
are valid also for all 7’s.

2. CONSTRUCTION OF THE CURVES 7, {¢)

Let X, and Y, denote the th MKdV and MKdYV field
respectively. Their “trajectories” are solutions of corre-
sponding evolution equations

u, = X, (),
v, =Y, (v).

More generally, leta,,...,a, be arbitrary constants (say, from
R or C). Consider linear combinations

X%=Za,X,, (2.1)

Y*=2Z2a,Y, (2.2)
and their solutions

u, = X%u), (2.3}

v, = Y%v). (2.4

We shall use the following well-known facts.

Proposition 2.1: (i) If v satisfies (2.4), then
u = M (v) = v? + vsatisfies (2.3) (see, €.g., Ref. 7); (i) if v satis-
fies (2.4), then { — v) satisfies it also (see, €.g., Ref. 7).
Equivalently,

Y —v)= — Yv). (2.5)
(iii) For any constant ¢, there exists a lower-triangular matrix

{2 ¢ which has ones on the diagonal, depends polynomially
upon ¢, and such that
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Xu + c) = X*u), (2.6)
where the vectors a and a are related by

a=20°. (2.7)
In other words, if u satisfies (2.3) then u = u — c satisfies

u, = X “(u). (2.8)
Proposition 2. 1{iii) follows from Ref. 1, Chap. I, formula
(17).

Now let us rescale the modified variable v by
w=ev—1le % (2.9)

If v satisfies {2.4), then w will satisfy

w = Z*“w), (2.10)
where
Z“(w)=e“Y"[e(w+%e‘2)]. 2.11)

Simultaneously, the map M (1.11) will send solutions of
{2.10) into solutions of (2.3} via

u =02 +v, =€w+ e + ew,
=le" 4+ w+ €W + ew,.
Therefore, applying Proposition 2.5 (iii) with
c=l"3 (2.12)
we obtain the map

gle)w—u = w+ e’ + ew,, (2.13)

}_vhich sends solutions of (2.10) into solutions of (2.8), with
a=02"*a.Since (2" =02 ¢, we get finally
Theorem 2.2: For any a = (a,,...,a, ), if w satisfies

w,=Z%w), =0 Y*a, (2.14)

then u = (g(€)) (w) satisfies (2.3).

Remark 2.3: Thus, we can deform not only individual
KdV equations but also their linear combinations.

Remark 2.4: We do not need to worry about whether a
deformed equation [such as (2.14)] is regular in a deforma-
tion parameter. It is always regular so long as a reduction is
regular [such as {2.13)] (see, e.g., Ref. 2).

Now it is clear how the deformed equations (2.14) de-
pend upon €.

Theorem 2.5: The right-hand side of (2.14} depends
upon €.

Proof: 2 ~'*< is polynomial in ( — 1/4€?), by Proposi-
tion 2.1 (iii}; therefore 8 = €~ “*“ is even in €. Since
ZF(w) = 3P, Z,(w), it is enough to look only at the Z,(w). By
2.11),

Z,(we)=€""Y, [elw + Je7)].
Hence, by (2.5),

I

Zw,— &) =(—&7Y,[ —elw+je?]
= — (= 1Y, [elw + e 7]

= Z,-(w,e).

3. THE CURVES 7, (¢) AND THE MAP M(e)

In this section we prepare the ground for the construc-
tion of the surfaces I',(¢,v) in Sec. 4. As was mentioned in the
Introduction, what we are aiming at is a curve of proposi-
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tions which goes through Proposition (2.1).
Let us consider two maps

sinh’eq
62

sinh(2egq)
2¢

M (€):qg—w = +4,, (3.1)

Mgle):.q—v = +eq,. (3.2)

Lemma 3.1: We have the commutative diagram
MoMgle) = gle)o M (e). (3.3)
Proof: We have

(MoMgle)q) = M(Si“;ffq + eqx)

. ) .
_ (stheq n eqx) + (smh2€q n éqx)
2e 2e

H 2
= _____sm;: Zeq + sinh2eq.q, + €2¢>
€
+ cosh2eg-qg, + €q,,,
sinh’e
steloM (ele) = (lel 2L + g, )

2eqg — 1 —1 2
_ cosh2eg ta. + €2( cosh2eg _+_qx>

2€* 2¢*
cosh2eg — 1 )
+ €| ——————+ 4,
( 2 %),
h2eqg — 1 h?2eq — 2cosh2
_ cos eg taq. + cosh2eq (;os &g+ 1
2e 4¢

+ (cosh2eg — l)g, + €°¢> + sinh2eq-q, + €q,,.

Remark: M (€] can be considered as a deformation of
M=M|0)

Definition 3.2: y,(€) = (Mgle)~')(Y,).

Corollary 3.3: y,(€) depends upon €.

Proof: By Lemma 3.1, 7,(€) = (M (¢)~')(7,(€))- By (3.1),
M (€) depends upon € by Theorem 2.5, ¥, (€) depends upon
e

Remarks: (i) As in Sec. 2, we could defined deforma-
tions not only of fields ¥, but also of their linear combina-
tions Y “ by

(€)= (Mgle)~")(¥ ). (3.4)

Corollary 3.3 would still remain true. {ii) The map (3.2) is the
reduction of 7“(€) onto Y °. (iii) Of course, one would like to
know that points on the curve 7, (€) or [or y*(€)] represent
finite fields, that is, evolution equations with only a finite
number of derivatives. That this is true, was essentially prov-
en many times in the physical literature (see, e.g., Ref. 8). For
the sake of completeness, the proof is reproduced here.

The Lax representations (1.2) for the MKdV equations
are the integrability conditions for

L = Ay, (3.5)
Y, =Py, (3.6)

where L is given by (1.9), ¥ = (¢,,¥,)' is a column vector, and
P runs over special differential operators which make sense
of (1.2) (see, e.g., Ref. 5). Equivalently, we can think of Pas a
multiplication operator, if we express x derivatives of i’s
using (3.5). In any case, what we need is the possibility to
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rewrite (3.6) as an evolution equation for I = ¢,/¢,:
I'=a+bl+cl?, (3.7)

where a, b, and ¢ are some polynomials in A and differential

polynomials in v. On the other hand, (3.5) is equivalent to
I, =2AI +vl'*—1), (3.8)

which can be transformed into (3.2) by identifications
A=¢€"1/2, I =tanh(eg).

Substituting this into (3.7) and eliminating v in favor of ¢ by
(3.2), we arrive at the desired equations.

4. CONSTRUCTION OF THE SURFACES I',(¢,v)

We shall follow the path of Sec. 2. For this we need an
analog of Proposition (2.1) for the pair ¥“(€), y*(€). We al-
ready have Theorem (2.2), which is an analog of Proposition
2.1 (i). The generalization of the property 2.1 (ii) for y4(€) is
given by

Proposition 4.1: Let us write evolution equations for
points on the curve 7%(€) as

q, = V%g,e). 4.1)
If g satisfies (4.1) then ( — g) satisfies it also. In other words,
Ve —g.€)= — Veg.e). (4.2)

Proof: Let v = (Mg(€))(g). By (3.2),
—g= —(Mgle))”'(v) = (Mgle)” ) — v),
and Proposition 2.1 (ii} does the job.
The property 2.1 (iii) can be generalized as follows.

Proposition 4.2: Let w be a point on the curve y*(¢) satis-
fying (2.14), which we shall write as

w, = E *(w,e). (4.3)
Then, for any constant E,

=1+ 2€e%)w—c) {4.4)
is a point on the curve (&), where

n €

€= m, (4.5)

G=02°"“a. (4.6)

Proof: We begin with w from (4.3) and u from (2.3),
connected via Theorem 2.2. Then we have
U =u—c—€=w+ew +ew, —c— €’
= (w — ¢)(1 + 2€%) + 4w — ¢)* + e(w — c),
=0+ &0 + &,
by (4.5). Thus g(8) sends i to u = u — ¢, where ¢ = ¢ + €*c>.
Now apply Proposition (2.1) (iii} and get (4.6).
Remark: For € = 0, Proposition 4.2 is just Proposition
2.1 (iii).
Now we can easily repeat the reasoning of Sec. 2 and get
Theorem 4.3: Let ¢ be a point on the curve y*(€) and let
w = (M (€)){g) be a corresponding point on ¥“{€}. Then
p=v"! (1 4+ v Y?g— e 'sinh'ev™") (4.7)
lies on the surface I"%(,v), where
E=¢€l + v Y12 (4.8)
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and a is given by (4.6) with
c=pw 1+ (14 v 327 (4.9)
The reduction G (€,v) sends p to i, which is related to

w = (M (€)) (g) by (4.4).
Proof: We have to show that

(G Evp) =1
First substitute (4.9) into (4.5) and get
1426 =(1+€ev7 37
e=¢(l426%) '=¢€(l + v
which is (4.8). Now
(G EVR)
sinh2evp  cosh2évwp — 1
28v N 28

(4.10)

(4.11)

+ VPx

cosh2évp — 1
2ev 2¢é€

—(142 622)[ sinh2éwp "

+—p ]
1+2¢% I
On the other hand,

A

w

—1
_ cosh2eq "
1+ 2¢°c

2¢?
1 vp 1. _,6)

= — cosh2el ——*——— + —sinh™'—
2e € ((1 +vTY2 * e v

PR SN S
(14 v y2s? 2¢*

- L [coshZévp(l + €2/v%)"'? 4 sinh &vp- i]
2€ v

qx-E

=w-—c¢) =

% _ 1

+—p— —,
1+2622p 2eé

which is just what is needed.

Corollary 4.4: Points on I" “{¢,v} depend upon +* (notice
that we have dropped hats from « and ¢).

Proof: By (4.9), ¢ depends upon v* and by (4.5) and (4.6),
the same is true for & and &. If ¢ is a point on (¢} satisfying
(4.1), then (4.7) yields

po=vT(1+evT) 2,
— V_l(l + €2V_2)l/2Va[‘V(1 + é.21,—2)—1/217
+%e"sinh_‘6v"],

which is an even function of v, by (4.2).

Remark: As was mentioned in the Introduction, our
construction of I, (€,v) can be considered as a deformation of
the construction of I, (€). To see this, put € = 0 in (4.7) and
recover (2.9), with v renamed €.

5. NONTRIVIALITY OF DEFORMATIONS

As was mentioned in the Introduction, we have to in-
vestigate three possible types of trouble.
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(A) First we check that evolution equations o = o{0)
and of€) are not equivalent under any changes of variables.
Here o{¢) stands for any of the deformations constructed in
the preceding sections.

To do this we use the existence of reductions for all
deformations constructed above. Let us write them as

fleyu—u; + €4, (5.1)

where n is the number of dependent variables (so far we have
had n = 1), ¢, are functions which are analytic in € and u,
where p = (4y,....4,, ), is a multi-index denoting

3™y, /9xt.-3x"m, and x,,....,, are independent variables
(we have had x, = x up to now).

We want to show that there does not exist any finite
inversion of the map (5.1). The word “finite”” emphasizes the
difference with the formal inversion of (5.1} in the formal
power series in é—such an inversion always exists. Of
course, we can take advantage of the simplicity of the case
n = 1, Then by the classification theorem (Theorem 4 in Ref.
9) of jet symmetries, (5. 1) must be a contact transformation of
the corresponding 1-jet manifold, and if there are any x de-
rivatives of u involved in ¢, of (5.1) this is impossible. The
argument can be made more explicit in the case in which we
are primarily interested: m = 1. Then if, say,

i=1,.,n,

Su—d e u,. i), £ hu—d (x,u,...,u"),
k>0, I>0
then

. Ou 3¢ ¢
0= Juk+D T gylk) aum#o’

a contradiction.
On the other hand, for n > 1, e.g., if we want to treat the
general scalar Lax equations {1.2) with

L=§n+1+ iuié—i“l’

i=1

(5.2)

the above argument cannot be applied because in the nonsca-
lar case n > 1 there are invertible differential operators, like,
say,

fu—u, v—v+ ed(xu,u,,...) (5.3)

To study such maps, we derive a simple sufficient crite-
rion of nonivertibility. First

Definition 5.1: Suppose we have a map fiu—yp given by
functions

¥, =yxu,.u¥), j=1..,N, i=1,.n

The Frechet derivative of fis the following matrix differen-
tial operator D ( f}):

- ay.
D(f) = zay-w—,a"

d, =38/0x,.

Theorem 5.2: For a map fgiven by (5.1), let us denote by
1(f) its linearization with respect to u near u = 0. If
det D(!( f)) is a differential operator (of positive order), then
the map (5.1) is not finitely invertible.

Proof: If f were invertible, then I { /) would be also, and

&= o,
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HAS) =14,
therefore
DI{f)eDU(f~)=1d,
thus
det D(I(f ") = [det DU (SN,

a contradiction, since the rhs does not exist as a finite differ-
ential operator.

Remark 5.3: The above criterion allows one to easily
analyze deformations for the case (5.2) (see Chap. III, Ref. 6).

Remark 5.4: In looking for a possible equivalence of
equations ¢{0) and a{e), one might wish to allow also x and ¢
to mix with 4% ’s, and instead of requiring the full inversion
of (5.1), to ask merely for a mapping which takes solutions of
o{0) into those of o{¢). But Vinogradov’s theorem guarantees
that nothing will change (Theorem 4, Ref. 10; Theorem 7.6,
Ref. 11).

(B} Secondly, to prevent the appearance of fields of the
sort X, + €X;, we have to check that o{€) — 0{0) does not
commute with ¢(0). To do this, we consider both ¢{0) and o{¢)
living on the same “jet bundle” (i.e., having the same coordi-
nates) so that we can commute them. Thus, for example, we
write g€} as

fu—u+ Eu +eu,.

Let us write down the fact that the fields o(€) and o = o{0)
are f-related:

ole)f=fo,
$0
ole) = fof ="
Then we have to show that
[fof ~'.0]#0. (5.4)

To do this, note that in each of the three cases (1.5), (1.8), and
{3.2) our map f has the form

fu—u+eu, +0(e,
$0
S hu—u —eu, + 0(€}.

On the other hand, all evolution equations we have met have
the form

u, = constX ™) + O (< N), (5.5)

where O ( < N ) stands for terms which depend upon &'/ with

J < N. In particular, anything which commutes with ¢ in the
form (5.5), must obviously have the same form as well. So it is
enough toshow that ( fof ~! — o) hasnoterms /inearin u and
its x derivatives. Let us write then

g =0, +02+ *tty
where o, is a homogeneous differential polynomial in u of

degree i. Since fo,f ~ ! has no components of degree less than
I, and

Jof'=o,+0(e),

we get
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deg(fof ' —0)> 1,
which is just what we needed.

(C) Finally, we do not want to have families of the form
X + €X, where X and X have the same conserved densities.
Again, we shall use the existence of the reduction to derive a
contradiction to the assumption that conserved densities are
the same for ¢ and o01{0).

We have three cases to consider: MKdYV, (¢), KdV, (),
and KdV, (¢,v). First, note that since KdV,(0,v) = KdV, (v),
it is enough to consider only MKdV, and KdV, fields. In
both cases the description of all conserved densities is well
known: for each positive integer n, one has conserved densi-
ties
2

(n)
H, =(— 1=

+0(<n), (5.6)

where O ( < n) are differential polynomials of degree more
than 2. Since

Su—u + eu, + (terms of degree > 2),

then conserved densities of o{€) via the pullback of H,’s of
(5.6) have the form, modulo exact derivatives,

w2 4 g2y ln+ 12
2

Thus, assuming the sameness of conserved densities, we
must have

Hn(f(u)):Hn(u)—szn+l(u)’ (57)
where ~ means “equal modulo Im d”.
Let us compute functional derivatives with respect to u
of both sides of (5.7). For the left-hand side we have
6
—[H.(fu)]

du
8H,, (u)
=D(f)T——
) S(u) |E = flw)

= [1 __ea_)r_o(é.Z)][;Zn -+—0(<2’1 _2)]§=eux+0(<1]

=[1—€ed+0(E)][en® "+ 0(<2n—1)]
= — U+ 4 [14 0] )+ 0(<2n).

(=1 + (terms of degree >2).
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For the right-hand side we have
OH _ o0H, 1

=u® +.0(2n -2
Su Su ( )

—e[u™*+¥ L 0(<2n)],

a discrepancy in the #*"+ Y terms.
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We study two-dimensional problems of elasticity when a homogeneous and isotropic solid of an
arbitrary shape is embedded in an infinite homogeneous isotropic medium of different
properties. Solutions are obtained both inside the guest and host media. These solutions are
derived by first transforming the boundary value problems to the equivalent integral equations.
The interior displacement field is obtained by a simple method of truncation. By this method the
integral equations are recast into an infinite number of algebraic equations and a systematic
scheme of solutions is constructed by an appropriate truncation. The exterior solutions are
obtained by substituting the interior solutions in the integral equations valid for the entire
medium. The boundaries considered are rectangular cylinder, equilateral triangular prism, and
elliptic cylinder and its limiting configurations. It emerges that the solutions for the elliptic

cylinder and its limiting configurations are exact.

PACS numbers: 03.40.Dz

1. INTRODUCTION

Chen and Young' have recently studied the displace-
ment fields inside some three-dimensional elastic solids em-
bedded in an infinite, homogeneous, and isotropic medium.
They have treated the problem by an integral equation tech-
nique due to Waterman® and Eyges®. By this technique the
integral equations governing these boundary value problems
are transformed into an infinite system of algebraic equa-
tions, which are then suitably truncated to yield exact or
approximate inner solutions.

Our aim is threefold. First, we extend the method to be
applicable in deriving the interior displacement fields in two-
dimensional linearly elastic inclusions of arbitrary shape em-
bedded in an infinite homogeneous and isotropic medium.
Secondly, we present a technique which helps us in obtaining
the displacement fields in the host medium also, both in two-
as well as three-dimensional problems. We use this scheme
to present the exterior solutions for the configurations which
have already been studied in Ref. 1. Finally, we present the
interior and exterior solutions for those configurations such
as a triaxial ellipsoid and elliptic cylinder of finite height for
which the solutions are not available. Solutions for the two-
dimensional problems are presented in this part while those
for the three-dimensional case will appear in part II of this
paper.

It emerges that the very first approximation yields the
exact solutions for an infinite elliptic cylinder and its limiting
configurations. All the known results in this field, such as
those given in Refs. 4-7, follow as small corollaries. A few
results appear to be new even for some simple configura-
tions.

In addition to the inclusions we also discuss the cavities
of arbitrary shapes. In their case we obtain the expressions
for the strain energy stored in the host medium per unit
height.
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2. GOVERNING INTEGRAL EQUATIONS

Let (x, y, z) be a Cartesian coordinate system. An elastic
homogeneous isotropic cylinder with axis along the z axis is
embedded in an infinite homogeneous isotropic medium
with Lamé’s constants A, and i, and density p,. The materi-
al of the cylinder has the elastic constants A, and g, and the
density p,. The section of the cylinder by the x, y plane occu-
pies the region S,, the exterior domain is.S,, while the bound-

Aixl

SiiAp ey

Sy AphyPr

FIG. 1. Geometry of the section of the elastic cylinder by the x — y plane.
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ary is C. The origin of the coordinate system is situated at the
centroid of .S, which is assumed to be symmetrical with re-
spect to the x or y axes. The configuration is explained in Fig.
1.

The constant stiffness tensors C §,,(x), x = (x, y)eS,,
a = 1,2, are defined as

Coulx)=Chy =4.6,8, + pa6uby + 6,01), x€S,,

(2.1)
where § ’s are Kronecker deltas. In this analysis Latin indices
have the range 1,2,3 and Greek indices have the range 1,2.
Let u° (x) be the displacement field in the infinite host medi-
um occupying the whole region § =5, + C + S,, due to
prescribed stresses at infinity, so that it satisfies the equilibri-
um equations.

Cluplii pa(X) =0, x=(x, V€S, (2.2)
in the absence of body forces.

In this analysis we shall employ the distributional
formula

div (Cioip ()1, 5(x))
= div (Ciaup(X)us, 5(x)) + [2; ]6(x — x¢)

b Crop) A (X [ =26k — x¢), XES,  (2.3)
Oxg

where the bar denotes the distributional derivative,
[F]=F(xc)|_ — F{xc)|. is the jump of the function ¥
from S, to S, the quantities t;, = C,5U; ", are the compo-
nents of the traction vector, and 71, are the components
of the unit normal vector fi to the curve C. Also, the displace-
ment field u, (x) is equal to u}, (x) for x €S, u; (x) in S,, and the
same is true for the tensor C,,, ;. The point X is on C and
8 (x — x) is the Dirac delta function.

The first term in Eq. (2.3) vanishes both in S, and S,.
The other two terms vanish because the boundary conditions
require that the displacements and tractions be continuous
across the curve C. Thus the global equation

div (Cours(X)itg 5(x)) =0, xS (2.9)
incorporates all the conditions mentioned above. Putting
Ciaip(X) = C g + (AC0s5)6 (x),
where
AC{akB = C?akﬂ - Cilakﬁ
and & (x) is the Heaviside function

0, =xeS,
f(x)=13 xeC,
1, xe$,,

in (2.4), we obtain

div (C l!nsz Uy plx))

= — div(ACiupis 5(x))0 (x)
+ AC 5ty g(Xc)ng (Xc)0 (X — X}, XES. (2.5)

In the above derivation we have also used the fact that

grad 0 (x) = — f{xc)d (x — X ).
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For the integral equation formulation of this boundary
value problem, we define a Green’s function G,,,, (x,x') when
the whole space is filled with the elastic medium whose stiff-
ness tensor is C }, , and the tensor G,,, satisfies the differen-
tial equation

div(C g Gipi(XX) = —8,,8(x,X), x,x'€S. (2.6)
The values of these functions are

G 5(x,X') = Gg, (x,X')

1{1 2 ( 1 1)
=--——-——V6a + — e —
87 lu, ? A+ 2u, 1

w9 _(RUnR) ] o B =12 (27

oadf
Gy(xx') = — (1/27u,)(InR), (2.8)
Goy (xX') = G, (x,X') = 0, (2.9)

where R = |x,x'|.

Multiplying (2.5) by G,,, (x) and (2.6) by u,(x), subtract-
ing and integrating over S, and using Green’s theorem we
obtain

() = 1, () — f GVAC sty (X))Gom X,X') S,
S,

+A4Cs ﬁcuk,ﬁ(xcn ~Gn (XX In, (xc)dlc,
(2.10)

where di is the arc length along C. Next, we use the relation
| divAC st )G, x5,
S,
=AC g 9Scuk, aXc)| - Gim (X, X'V, (x )l o

- Ac,w,f Gona (XXt 5 (X) S,
S,

in (2.10), interchange x and x’, and get

(2.11)

) = 8306) + AC,up [ Gyl kXt () S,
S,
xeS  (2.12)
where u, 5. (x') = du, (x')/9x’.

In order to solve the integral equation (2.12) we decou-
ple it and make some changes in the indices so that they take
the forms

40 1%) = 82050+ Ay [ Gy Xt x) S

S;

a=12 xeS, (2.13)

) = 0(x) + A [ G kX ) S, xS,
S.
(2.14)
where Ay = p, — 1. Setting

w,(x) = W(x) + ui(x), (2.15)

we obtain the integral equations for the disturbed field u® (x)
as

ul (x) = ACBW&L Gop, (XX )u, 5 (x)dS;, a=12,
' (2.16)
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uy(x) = Ayf G, (XX )u;y , (x') dS ;. (2.17)
s

Equation (2.14) embodies the antiplane strain problems in
the two-dimensional elastostatic composite media and has
been solved by us in Ref. 8, where we have solved various
kinds of the potential problems in composite media such as
electrostatics. We shall process here Eq. (2.13), which em-
bodies the two-dimensional plane strain problems.

3.INTERIOR SOLUTION OF THE INTEGRAL EQUATION
(2.13)

To present the systematic approximations we differen-
tiate Eq. (2. 13) n times and obtain

u, Py (X) a Py pn(x)

= ACH‘VV‘SJ Gdﬂ-YPl"‘Pn (x’x')uv,s (x’) dS;,
52

=(—1)* ‘ACBWSJ.S Gopyprp (XX N, 5 (x') dS
x&S,, (3.1)

where the p’s have values 1,2. Now, we expand the quantities
u,s(x’) in a Taylor series about the origin 0 when x’eS, so
that

= 1
U,5(x) = ;E{u“’s"'""”:(o)}x’;*- X!,

& 1
g Dy COHL) SR A

where the ¢’s also have the values 1,2. Substituting this value
in (3.1) and setting x = 0 in both sides, we have

(3.2)

Uapy-p,(0) = Ugp,.p,(0)

=(- )"“ACBW,sZ T apvprpuiaUvog,a,0) (3.3)
where
Tapyp,pmay-

"o » ’
J- «'B Y pi-pi (0.x )xm X, ds;

= J;_ Gaﬁ.rp.'--p,.(x’olxq. X ds,
2

which depends only on the elastic constants of the host medi-
um and the geometry of the inclusion.

The inner solution is derived by truncating the system
of equations (3.3) to a finite number of equations involving an
equal number of unknowns. Then the coefficients Ugp,p, (0)
can be solved in terms of the known coefficients 43 , ., (0) in
the Taylor expansion of 4, (x). It emerges fortunately that
the lowest order truncation gives a close approximation in
most of the cases and exact solutions for the elliptical and
circular cylinders. Accordingly, for n = 0, u_(0) = 42(0),
while for n = 1, s = 0, we have

ua,p (0) - ug,p (0) = ACByv& Ta[] vp 1),5 (0),

where

Toprp = J;Gaﬁ‘w,(x,O) ds,

(3.4)

(3.5)
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= {ul— laaBtypkk + (M l~ b— I‘tl— l)taﬂyp }’

M, =4+ 2, (3.6)
and
lagyy = — _1— 84_ —[7In r}ds,,
87 Js.0x,0x59x,0x,
r=|x|. (3.7)
The quantities 7,4, are the shape factors. They depend on

the shape of the inclusion and are totally symmetric and
dimensionless.

When we substitute the value ACp,,s = C3,.5 — C pus
from (2.1} in (3.5) we have
U, (0) — ug ,(0)
= A/l Tay 574 v,v(o)
+ AT o5, g, (0) + Topptiy 5 (0)); (3.8)

where dAA =4, —4,.
In the next stage we decompose u,, , into the symmetric
and antisymmetric parts ©,, and a,, respectively,

Uap(X) = Ytg,p(X) + 8,0 (X)),

oy (X), 48, (X) — 11,4 (X)), (3.9)
and define
T iip = Mg £ Topyal- (3.10)
Then relation (3.5) gives rise to two relations, namely,
U, (0} — g, (0) = ACs,,5 T 55, 4.5 (0}, (3.11)
20y (0) — a4, (0) = ACp)5 T i, 4.5 (0)- (3.12)

Equation (3.11) is equivalent to
Uqp(0) — (AAT 5,1, (0) + 28uT 5 ., (0))
= i, (0. | (3-13)
Setting p = @ and summing on a, this equation reduces to
Uea(0)[1 + (44 /M )]

— (24u/M ) [2),5111(0) + £r255(0)u2(0)] = ug,(0),
(3.14)

where we have used relations (3.6) and (3.10). Similarly,

5 -1
4o (0) =§(ae+ﬁ‘ )
Y

€

. [[1 N a, + (14 44 24u)5, ]u?l 0)
Ve
+ [a‘ + +;M 24p)be 1]u22(0)}, =12, (3.15)
up(0) = [1+ Aufu; ' —4M ! — 1 s ] ', (0),
(3.16)
and
a.=1—-28pult o/M, —2M ' —pu= l)tcerm 1
B.= —(44 M\t eeue — 240 [M ! -t ]téén-q!
n =1+44A/M, — 24u/M\)t,, ..,
= Au/M it cao — e ), (3.17)

6#77, €, = 1,2, and € and 7 are not summed.
As regards the antisymmetric quantity a,,(0) we ob-
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serve that ,,{0) = a,,(0) = 0 and, therefore, a,,,(0) = 0.
Also a?, (0) = a3, (0) = 0. This leaves only a,,(0} and a,,(0) to
be determined. Indeed, by substituting the values of 4Cp, ;5
in (3.12) and using relations (3.6) and (3.10) we find that

a(0) = —a,y(0) = a},(0). (3.18)

4. VALUES OF SHAPE FACTORS FOR VARIOUS
CYLINDERS

(i). Rectangular cylinder. Let the rectangular cross section
have the edges of length 22 and 25 parallel to the coordinate
axes with its center at the origin. Their equations are

x = + b,y = + a. Then there are the following nonvanish-
ing shape factors:

1 b ab ]
t = — —!2arctan — — ———1, 41
H 77[ a a>+b? (4.1a)
1 a ab ]
t = — —{2arctan — — ————1, 4.1b
2 Tr[ b a4+ b? (4.10)
1 ab
t =1 = —l—=5 4.1
1122 = Iy Tr[az—}—bl {4.1c)
Hige = — i arctan -ll; oy = — —?; arctan i.
T a T b
(4.1d)

For a square cylinder, b—a so that the above values
reduce to

L = e = {(1/27) — 4), {4.2a)
hin=typn= —1/27, {4.2b)
Hice =laa = — 3 (4.2c)

(ii). Prism. Let the prism have the equilateral triangle whose
cross section is described by the equations

y= £ (/3 (x+2/3% x=a/3,

where 2a is the length of each side of the triangular cross
section and the centroid of this section lies at the origin.
Then the nonvanishing shape factors are

hii=lon= —3% (4.3a)
him=Ilpn= —§ (4.3b)
Lige = tga = — 3 (4.3c)

(iii). Elliptic cylinder. It is convenient to introduce the elliptic
coordinates {£,7) such that

x = c coshé cosn, y = csinh siny,

where 2c is the focal length. The semimajor axis @ and the
minor axis & are a = ¢ coshé,, b = ¢ sinh&,, and the bound-
ing curve C of the elliptic cross section (Rather the elliptic
section is given by x2/a* + y*/b*< 1,£ < &,)

x*/a* +y*/b* = 1lis given by £ = &, thatis, x = ¢ cosh&,
€087, y = c sinh&, siny, where ( + ¢,0) are the coordinates of
the two foci. In this case the nonvanishing shape factors are

ty = —le” % sinhgy(2 — coshéye ~ &), (4.4a)
typy = — e % coshé,(2 — sinhée ~ %), (4.4b)
ti12a =1ty = — le™ * sinh2§,, (4.4c)
oo = — e~ %sinhEy; b, = — e % coshé,,
(4.4d)
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For a circular cylinder these values reduce to

thin=lun= —% {4.5a)
ha=tpn= —b (4.5b)
Hige = lpaa = — & (4.5¢)

which are the same as for the equilateral prism.

5. EVALUATION OF THE INTERIOR DISPLACEMENT
FIELD

(i). Square cylinder, equilateral triangular prism, circular
cylinder. When we substitute the values of the shape factors
from the previous section into formulas (3.15)~(3.18) we find
that the values of u,, (0) and a,,,, (0) are the same for a prism,
and a circular cylinder to this approximation. These values
for a square cylinder, an equilateral triangular prism, and a
circular cylinder are

u(0)=4[4 7" +B " "Juf, 0+ 4[B ' — A4 Ju$,(0),(5.1)
uy,(0 =%[B—I —A4 l_l]u?l(o)‘f'%[A 1*1‘+‘B_]]“(2)2(0)»

(5.2)
uy5(0) = uy(0) =4, 1“?2 (0} ap0)= —a,(0)= 0?2(0)-
(5.3)
where
4, =[1+C (Au/p))], i=12, (5.4)
3a,K, + 4b,
B= (1 + M), = _’_'t__‘ﬂ, (5.5)
3K|+4/J«1 3K|+4#l

whileAK = A4 + 24pand K| = A, + u,. The values of the
quantities a’s and & ’s for a square cylinder are

a‘=2/ﬂ', b1=1/277'+‘%,
a,=1—2/m, by=1—1/2m, (5.6)

and for the equilateral triangular prism or a circular cylinder

they are
a, =a,= b=by=1. (5.7)

From this analysis it follows that the inner displacement
fleld in all these three cases is given as

u(x) = u3(0) + (u,(0))x + (u,5(0) + a,(0))y,

1
2

{5.8)
us(X) = u3(0) + (112(0) — a,5(0))x + ux,(0)y,

for xeS,, where we have used relations (3.9) in the Taylor
expansions of u(x) and #,(x), and u,(0), u,,(0), 4,,(0), and
a,,(0) are given by (5.1)~(5.7) in terms of the values of
u%,(0), 43,0}, u3,(0), and af, (0}, which can be easily derived
from the known displacement field Y, (x).
(ii). Rectangular cylinder. Now we substitute the values of
the shape factor for the rectangular cylinder from the pre-
vious section into formulas (3.17) and obtain

a,=1— ZAy[ - —2—(M . arctani)

s a
2 ab
2 _____] (5.9a)
+ T ( 1 1231 )az + b 2
B, = —ZAE(M ! arctani)
T a
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248u -1 -1 ab
== (M — _
+ i ( 1 H )02+b2

v, =14+ M 'A% + (4/m)AuM [ ‘arctan(a/b), (5.9c¢)

(5.9b)

5 = LIV IA/i(arctan% - arctani), (5.9d)
us

a

and the values of a,,5,,¥,, and 8, are derived from these
formulas by interchanging a and b.

When we substitute these values in formulas (3.15) we
get the values of the quantities u,,(0) and u,,(0) as

(o)< (i Ao

where

(5.10)

4
A, =2+M (42 +24p) ~ ';A,u(MlAl —u )

2
X—zﬂ—z—{——M(‘(ZA,u +44)
ad+b T

a b
Xlarctan — — arctan— |,
b a

A,= —AIM ‘[1 + i(arctani — arctan—g—)]
T a b

ab

4 _ _
Ap(M [ —p, ‘)m»

T
D=[1+M 44 + 4u)]
4 _ _ ab
X{l - ;A#(Ml ! — i 1)a_2 n b_2]
16 a b Ay
—M 2Au(d AA )arctan — arctan— + ——,
+ ) L Apldu + ) b 2 M,
while the expressions for 4,, and 4,, follow by interchang-
ing @ and b in the above formulas for 4, and 4 ,, respective-
ly.
Similarly, the value of u,,(0) is

4 ab ~1
0)=|1+4 Sl =M -t ”
wl0) = 1+ dufper '+ 20—
X u%(0), (5.11a)
while
a,5(0) =a%,(0) + —zﬂ(arctani — arctani)ulz(O).
T, a b
(5.11b)

The inner displacement field for the rectangular cylinder is
also given by Eq. (5.8) except that now the values of u,,(0},
1,,(0), u,,(0), and a,,(0) are given by relations (5.10) and
(5.11). When b—ua, these results reduce to those for the
square cylinder, as derived above.
(iip). Elliptic cylinder. In this case the values of the coeffi-
cients a,,83,,7,, and §, are

a, =1 + (e~ Ssinhé )Aul1/M,
— (1/M, — 1/ )e ~ % cosh&,], (5.12a)
B =e~%sinh&[A4 /M, + e 5*Au(l/M, — 1/u,)

X coshé,l, (5.12b)
41 . 17 24p
= 14—+ 2e~%_coshé,; &, ="Fe %
" M, M, S 0=
(5.12¢)
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The values of @,,3,, and ¥, are obtained from the above for-
mulas by interchanging sinh£, and coshé,, while 5, = — §,.
Next, we substitute these values in formulas (3.15} and
get values of 4, (0) and u,,(0) from formulas (5.10), where the
values of the 4 ’s and D now are
Ay =2+ 24AM [ e Scosh€, + Auu ‘e~ *° sinh2§,
+ 24uM [ e~ *» coshé(2coshé, + sinhgy), (5.13a)
Ay =24uM [ e~ % coshéy + u, 'Aue ~ %0 sinh2€,
— 24AM [ ‘e~ Ssinhéy — 24uM [ le
X coshéy(coshé, + 2sinhé),
D={1+(4A+auM '}
+ {1l — Ap(M ' — p; e~ *sinh2g,}
+ ApM {1 4 2M A4 + Ap)e ~ ¥osinh2£, ),
(5.13¢)
and the values of the quantities 4,, and 4,, are derived from
the above formulas for 4, and 4, respectively, by inter-

changing sinh&; and coshé,. The coefficient #,(0) has the
value

u5(0) = [1 'f‘A,U{,“l~1 + (M = e sinh2§0}]‘1

(5.13b)

X u3,(0). (5.14)
Furthermore,
a;5(0) = a%,{0) — (Au/p ) e~ *u5(0). (5.15)

Finally, by substituting the above values of u,,(0),
#,,(0), u,,(0), and a,,(0) in formulas (5.8), we obtain the re-
quired displacement field inside the elastic elliptic cylinder.
When £,— oo we recover the corresponding values for the
circular cylinder, as derived earlier.

(iv). Infinite strip. For an infinite strip — c<x<¢, y =0,
— ® <Z < , we can derive the corresponding formulas by
taking the limit £,—0 in (5.12)—(5.15). This yields

u1,(0) = u3, (0), (5.16a)

unf0) = [1 + (“—‘%Zﬂ)] . [ - %u?l(m + u‘;z(m],
(5.16b)

ual) = [1 4+ A/, ]~ 4, (0), (5.16c)

@(0) = % (0) — (Apt/pt,) ,500). (5.16d)

Substituting relations (5.16a}~(5.16d) in (5.8), we obtain the
required inner field inside the strip.

We shall now prove that the above inner displacement
fields as derived by the first approximation for the elliptic
cylinder and its limiting configurations of the circular cylin-
der and the infinite strip are exact solutions of the governing
integral equations (2.13). It is assumed that the infinite host
medium is subjected to a constant prescribed stress field in
the absence of the body forces. Accordingly, the known dis-
placement field «, (x) is linear in x and y. For this purpose, it
suffices to establish that the integrals

L, (x)= LGGB’Y(X,X') das;, xeS,,

are linear in x and y when the section S, is an ellipse because,
using this result, it follows from Eq. (2.13) that the inner
solution u,, (x), XS, is also linear in x and y for an elliptic
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cylinder. This is true since in this case the quantities u; 5 (x')
are constants and therefore all the terms on both sides of Eq.
(2.13) become linear in x and y. Accordingly, the above ap-
proximate inner solution for an elliptic cylinder by the first
truncation of Eq. (3.3} is the exact inner solution. Let us
therefore prove that I, (x), x&S, is linear in x and y. To
establish this we shall prove that for an elliptic cylinder the
following relation holds:

32
e §
dx,0x, sy (%)

Jopvog(X) =

=fGaﬁ,n,q(x, x}dS; =0, pg=12 xe5, (5.17)
S,

It amounts to proving that for an elliptic cylinder

a"
[8xal 0%, 0%, Vasn q(x)}

x=0
= [J Gaﬁ,ypqa,a,...a,,(x’ x’)dSE] = 0’
S, x=0
D30y, = 1,2, n=0,1,23,.... (5.18)
To prove this we first observe that
G w.a (X, X')dS ’)
(J:S‘, aB,ypqa,as... ,.( )ds; x) = (0)
- ( - l)n + lfGa’ﬁ’,Vp’q'a;ag...a;,(o’x') dS;
s
(5.19)

— (=1t f Goppae,. (60) ;.
S,

Also, from relation (2.7) it follows that G,,4(x,0) involves sec-
ond order partial derivatives of |x|? In |x|. Therefore, in or-
der to establish (5.18) with the help of (5.19) we have to prove
that for an elliptic cylinder

"

(P InrdS, =0, a,.ay=12, N>5.
s, 0a;...00

(5.20)

Due to the symmetry of the elliptic section S5, (5.20) is obvi-
ously satisfied for all odd values of N>5. Therefore, it re-
mains to prove that

aZL

(PInr)dS, =0 a,,...,a,;, = 1,2, L>3.
s, 0a,...0a,,

(5.21)

Now for the elliptic section S,:x*/a* + y*/b *<1, rela-
tion (5.21) reduces to

f g (i)u " (PlnrdS, = 0,

2at + yrbict OXT \OX,

o<Km<g2L

which is again true for odd values of m because of the sym-
metry of the region of integration. It therefore remains to
prove that

f [ 2 (—‘9—)” - "’(rzlnr)]ds2 —0,
/a4 yrbi<t | OXI\OX,

0<n<L for L>3.
Now the integrand in (5.22) is of the form {1/~ 1)

(5.22)
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x {a,cos2 Lé + b, cos(2L — 1)¢ }, where the coefficients
a, and b, depend on the values of the integer n while
dS, = rdr d¢. Accordingly, this equation becomes

limf ’ [{a,, cos2L@ + b, cos2(L — 1)¢ }
$=0

€0
(cos’d /a’ + sin’p /b3 /2 dr .

+£:6 -;zt;]d:ﬁ =0 ifL>3, (5.23)
where we have excluded an infinitesimal region lying inside a
circle of radius € with center (0) form the domain of integra-
tion and have used the polar form of the ellipse, namely,
r = (cos’d /a* + sin®p /b %)~ '/%. The value of the inner inte-
gral in (5.23) is

1 1 (cos’s sin’¢ L-Z]
(2L—4)[62L_4 (a2 + b2) ’

which can be expressed in terms of the known coefficients c,,
as

1 [ 1 L2 )
—_—— — ¢,,cos2me t,
2L — 4) [P ,..Z’o ¢ ]
which when substituted in (5.23) makes it an identity in view
of the orthogonal properties of the trigonometric cosine

functions, and we have completed the proof that the very first
approximation for the elliptic cylinder is an exact solution.

6. HIGHER ORDER APPROXIMATIONS

Let us now display the power of the method by present-
ing the estimate of the accuracy of the first lowest order
approximation for those configurations for which it does not
yield an exact solution. Let us, for example, take the case of
the square cylinder. For simplicity we consider a purely
plane static strain

uy 5(x) =US,;, xe§ (6.1)

applied to the host medium before inserting this cylinder.
Then

ul?l {x) = uz?z (x)=U, ux?z (x) = “(2).1 (x) =0, (6.2)
so that
uWd(x)=Ux, ud(x)=Uy. (6.3)

By symmetry, there are the following three independent
nonzero coefficients in the Taylor expansion of the displace-
ment field u, (x) inside the square cylinder,

A=u;,0)=u,, (0), (6.4a)
B=u,,;,,(0) =t (0), (6.4b)
C=u3,0)=uy,, (0). (6.4¢)

From Eq. (3.3)if follows that for the second approxima-
tion we take n = 1, s = 2 so that

Uap(0) — 15, (0)

= Cﬁyvé [Taﬁ.rpuv,ﬁ (0) + (1/2!)Taﬁ,mq.qzuv,Bq.qz (0)](6 5)

Identifying p with a because of the symmetry consider-
ations and using (6.2), the above relation reduces to
[1 (44 + Au)T 55, JA — A/ 2T 550,58 B

—(Au/D2T .5 yapy — 3T appaps 1C =Y, (6.6)
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where an index appearing four times is to be successively set
equal to 1,2 and then summed.
Similarly, for n = 3, s = 2, relation (3.3) yields
ua’l’x P2Ps (0) = ACBva [T apf.,yp; pa p,#v,é (0)
+ iTanYPl P29 92 u"-&ﬂz (0’ ]' (6'7)
Identifying p, with  in (6.7) and p; with p,, we have
Ugapp = AChyns [Taﬂ.rappuvyé (0) + 3T g yappaia, Yvsa,a, 0]
which reduces to
B+C=0. (6.8)
To find the third relation for 4,B, and C, we set
a =p, = p, =p,in (6.7) and obtain
C [2 + Aﬂ {TaB,Baaa,yy + 2Taﬂ.r¢zaa,ﬁy - 4Taﬂﬁaaa,ﬂﬂ}]
= — 2442 + AT g puca- (6.9)

To derive the values of 4,B, and C we evaluate the shape
factors of orders six and eight occurring in Eq. {6.6), (6.8),
and (6.9), For the square cylinder the required values are

Toppa = —M ", Toppaps =2M [ '(2/7— 1)
—0.28M 1,
Taﬂ,Baaa,yy = (IZ/V)M 1_ "= 3.6M 17 1; Taﬂ,ﬁaaa
= /MM = —0.64M [,
TaB.Eaaa,BB

=6u '+ 2/ m—4M [ =6u; ' —336M

TaB.raaa,ﬁy =.ulu 1(3 - 6/7) + (M l_ ! -/‘l_ l)( -3 + 3/7T)
=3.12u; ' —~2.04M 1,
Substituting these values in Eqs. (6.6), (6.8}, and (6.9),
which we solve for 4,B, and C, and get
A={[1+M 44+ 4p)]
(0.1536)Au(AA + Au)M [

—1
- v,
[1+ Au{6.48M ' —8.88u '} ]
(6.10a)

C= —B=0.6441+ApM "
x{1+4u[6.48M ' —8.88u; ']} '4. (6.10b)
Now, when u§ (x) = Ux, 3 (x) = U p, we have from the

first approximate inner solution for a square cylinder as giv-
en by Eq. (5.1)-(5.6},

Ap + 34K
1,1(0) = u,,(0) 3K+ 4,
2(1 + M)U:un(m, (6.11a)
M,
4y 1(0) = 0= uy ,(0). (6.11b)

Note that we do not get any information about the values of
the coefficients B and C. When (A4 )M [~ %, (Au)M [, and
(Ap)e, ' are very small, the value of 4 in (6.11) obtained
from the first approximation is almost equal to that obtained
by the second approximation (6.10a).

7. CYLINDRICAL CAVITY AND STRAIN ENERGY

When the inclusion is a cylindrical cavity of an arbi-
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trary shape we have
Ay=p,=0; A= —A,4u= —pu,
ACps = —Chyos

Let us assume that the whole infinite medium is subjected to
the constant stress field 79,4 (x), where

=X =T, 7%x)=0 xS 1)
Hence,
W)= —2F . W= — . xes,
24, + ) 204, +uy)
(7.2a)
u2(0) = u3(0) = 0;
u2,(0) = u3,(0) = WTQ—} = u5,(0) = u3, (0), (7.2b)
1 1

a12(0) = 0, u,,,(0) = 3, (0) = 153, (0) = u{,(0) = (0).
(7.2¢)

1t follows from Eqgs. (3.15) and (3.16) that the first approxi-
mation yields the inner displacement field solution

uy(x) = uy, (O, u,(x) = (u,,(0)y, x€S,, (7.3a)
where
T 1
U e (0) = uee(o) = _[ ]
2 (/ll +/‘l'l)(ae7/e +Bsée)
X [aé + (1 + ﬁ)ae]. (7.3b)
2u,
teeaa
a, = 1 + 2/‘1[— - 2(M 17, _.ul_ ])tseﬂn]’ (730)
M,
A _ -
Be = ﬁlltseaa + 2(M1 ! —H ]) t€e7717’ (73d)
A u
e=1— =t + =1 0 7.3e
7 AR (7.3¢)
85 = Ml l(trmaa - tesaa )’ (7'30

while € 77 and €,7 are not summed. Consequently, the inner
stress field vanishes, i.e.,

Tl{X) = Tp(x) = 715(x) = 0, x €55, {7.4)

as expected. Using boundary conditions across the curve C,
we get

ui(xc) = uy(xc)| =y (0)xc;
uxXc) = uy(xc)| 4 = (42,2 (0)yc, {7.5a)
TnalXc) = Taﬁ(xC” +hglxc) =0, (7.5b)

where X, = (x¢,yc)and 4, ,(0) and u, , (0) are given by (7.3).
As in (2.15), the stress field 7_,(x) can be written as

Ton(X) = Tog(X) + 755X, X €S, (7.6)

where 7% ;(x) represents the disturbance in the constant ap-
plied stress field 73,4 (x} due to the presence of the cylindrical
cavity in the host medium. Substituting relations (2.15) and
(7.6) in (7.5) we have

Tx.

ui(xe) = (u,, (0)xc — ‘m;
1 1
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5 Tyc
uy{xc) = (4,00 — m? (7.7a)
Tna (Xc) = Top(Xc)| L Ap(x) = — gﬁ(xc)|+ﬁ5(xc)’
(7.7b)
TulXc)= —Th\(Xc), Talxc)= — Thyxc), (7.7¢)
Ton(Xe) = Thq Aulxc)= — T, (7.7d)

where we have used the results (7.1) and (7.2).
The elastic energy E stored in the host medium per unit
height due to the presence of the cylindrical cavity is given as

E= — 53§C (1, (X A (xe ) (el

+ ;fﬁc (s (00, b (e (7.8)

where the second integral vanishes when we appeal to the
known far-field behavior of «;, (x) and 754 (x). When we sub-
stitute the values of u}, (x_), 73, (x.) from (7.7a) and (7.7d) in
(7.8), we get the required formula for E,

E= %ECHH"‘ (0) — T(E.Im]xcﬁ'(xC)

+{ual0) - m}ycﬁztxa]cﬂc, (79)

where u, (0}, u,,(0) are given in (7.3} in terms of the shape
factors of the inclusion. Since the inner solution was derived
by using the first approximation, we find that formula (7.9)
for E is exact for elliptic cylindrical and circular cylindrical
cavities as well as for an infinite crack.

We now derive the expressions for the strain energy £
per unit height for different configurations.

(i). Elliptic Cylindrical Cavity. The ellipse C is given by

Xc = c coshé, cosn, yo = csinhé, siny,
A,(xc) = sinh&, cosn/h,, A(xc) = coshé, siny /A,
"2 dle = hyedy.

Substituting these values in (7.9) we get

hy = (cosh?&, — cos’y

E =1 sinngy coshy [ [(w,,0)kos’y
0

T
+  (uy,(0))sin’y — ———-—]dﬂ,
{ 22 ) 7 2, + )
T, . T
:%c‘ sinh&, cosh§(,[um(0)+ uy,(0) — -—(/11 oy ,

(7.10)

where u(0) are given by (7.3b). When we put the values of
the shape factors for the elliptic cylinder from (4.4)in (7.3) we
derive the values of u, . (0), which when substituted in (7.10)
yield

E— Tr 2Sinh2§0[ ™ ,cosh?é‘() _ T ,
42 , waldy +,ul)52mh2§0 AL+
2
_ T w[a +b + {a—>b) ], (7.11)
4 H Ar+

where a and b are the semiprincipal axes of the ellipse C.
When b—a in (7.11), we derive the corresponding result
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for a circular cylindrical cavity of radius a, namely,
T7 . T34

2u, 2 ,

where A = 7a” is the area enclosed.

When -0, in (7.11) we obtain the corresponding result
for the infinite crack of width 2a,

ix|<a, y=0,

E=

(7.12)

— W <Z<L 0.

This value is

T*ma* {i + 1 _ T'ma’M,
4 H Ay + 1y 4uy(Ay +py)

Even this limiting formula appears to be new.

(ii). Square Cylindrical Cavity. In this case, C consists of

four sides of the square of length 2a with center at 0, that is,

E =

. (7.13)

|x|<a, y= ta; |yl<a, x= +a.

When we substitute the values of the shape factors from Eq.
(4.2) in (7.3), we obtain

U (0) = u,,(0) = TM,/2uA | + 1),
so that formula (7.9) yields, in this case,

_ATf_ ™M, T U"ady
2 Lopyfd+p) 20, +p)l) o
(7.14)

or
E=T%4 /24,

where 4 = 4a” is the area enclosed by C. This formula agrees
with (7.12) for the circular cylindrical cavity.

8. EXTERIOR SOLUTIONS

To derive the displacement field in the host medium we
again appeal to the governing integral equation (2.13), valid
in the entire plane S. In this equation we now substitute the
value of the displacement field in the guest medium, which is
valid up to the surface of the cylinder. To understand the
method let us first discuss the case of the circular cylinder.
(i). Circular Cylinder. Let us assume that the prescribed
stress field is such that we have the uniform tension T'in the
direction of the x axis before the cylinder is inserted in it.
Accordingly, the displacement components are

10 (x) = M, U2 (x) = _ ATy (8.1)

du(A + ) 4 (A +py)
In terms of the polar coordinates x = # cosd, y = rsind, this
assumption yields the following displacement and stress
fields:

udx) = (Tr/2E\)(1 + 0,){(1 —20,) + cos2d |, (8.2a)
u(x) = — (Tr/2E )1 + o)) sin24, (8.2b)
2 (x) = (T /21 + cos28 ), (8.3a)
O x)= —(T/2) sin2#, (8.3b)
29,(x) = (T/2)(1 — cosd ), (8.3¢)

where E is Young’s modulus and o is Poisson’s ratio,
poMtru A ,
A+pu 24 + )
and the subscript 1 stands for the host medium as before.

>
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Exact Interior Solution in the Region r < a. Recall that
relation (5.8) gives the exact value of the displacement field
inside the circular cylinder for a general prescribed uniform
stress field at infinity. For the present case of the uniform
tension T in the direction of the x axis, it reduces to

_I'{l —o)) 1 — 20,
i) === {m—z@)u.wz]
2
, 8.4
T +<3—4a.)u21}x (842
uix) = T(l—a,){ 1-20,
’ 2 LI =203, +p2]
2
_ , 8.4b
(1 + 3 — 40, pta] }y (845
u(x) = Tl — o)) l 1 - 20,
! 2 L1 — 2050, + u5)
2co0s2d ] (8.4¢)
[, + (3 —40,)u,] ’
uy(x) = — T(1 — o)rsin2d (8.4d]
’ [, + (3 —do)u,l
forr<a.

From these values we find that the interior stress field is

1
T, (X) =1, T(1 — 01)[ﬁm

2cos24 ] , (8.50)
B+ (3 — 4o u,
2 sin24
_ _ _csmiv b (8.5
o= =T (1= o) 2, (a5
1
Tyo(x)=pu,T(1 — 01)[[(1 200, + ]
_ 2cos2¢ ] (8.5¢)
(1 + (3 — 4o ]

As far as we are aware, the exact solutions (8.4} and (8.5),
even for such a simple boundary and such a simpie pre-
scribed field, are given here for the first time.
To derive the displacement field in the region > a we
appeal to the integral equation (2.16), namely,
g (x) = Acamf Gupy XX, 5 (X)dS 5, @ =12.
> (8.6)

When we substitute the values of constants u, 5 (%) as calcu-
lated from the linear interior solution (8.4) and use (2.1) to
write down 4Cj,, s explicitly, we obtain

_/H[T(l —oy){1 —205)]
[(1 =205, +pu,]
+ 20y = o) [ [Guvabxax )
S,
+ G (x,xl)uz,z (X')]dS;,

ui(x) =4,

L G, (xx)dS;

r>a. (8.7)

Next, we substitute the value of the Green’s functions (2.7) in
(8.7). The values of R ? and In R in (2.7) for the present case
are

R2=7P 4 r?—2rcos(?® — &)
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and

ok § (L) 000,

r>r.
n=1\F n

After carrying out the integration in (8.7) and simplifying,
we obtain that formula for ] (x). Similarly, we derive the
value of u} (x). They finally yield

ul(x) = 4 + [ — g + £(1 — a,)] cos2d, r>a,
r r Id
(8.8a)
uyx)= — [% +£(1 - 20,)] sin2d, r>a, (8.8b)
r r
. A 3B 2C
. (x)= 2,u,[ - + (7 - 7) cos2 ], r>a,
(8.9a)
T9(X) = 2u, g — %] sin2d, r>a, (8.9b)
r
wa(x)=2#|[/—4- - 2008219], r>a, (8.9¢)
7 7
where
A= Ta* (1 —20y0u, — (1 =20y,
4u, (1 =203 + po
_ Ta* =g | 2B
4y py+ (3 — 4oy a’

These formulas agree with the ones given by Goodier” and
by us.!?

(ii). Eltiptic Cylinder. Let us assume that the whole host me-
dium is subjected to a uniform tension 7 applied in the direc-
tion making angle a with the x axis before the guest elliptic
cylinder is inserted. Therefore,

O(x) = T[2(A, + p )cos’a — A,] X+ TsinZay,
du (A ) 4,
(8.10a)
. -
W0(x) = T51n2ax+ T[2(4, + u )sin“a —ﬂ.,]y’
4u, (A, +u)
(8.10b)
7, (x) = Tcos’a,ry, (x) = Tsin’a,
79 (%) = TS';Q“, (8.10¢)
2 —
w8, (0) = L2 tpjeova — i) (8.10d)
4 (A +p)
o
uy0) = T2 Fpfsing — 4] (8.10¢)
4u Ay +py)
in2
%, (0) = 3, (0) = s a0 =0 (8.100
1

Accordingly, the exact linear interior solution in this
case follows from Sec. 5 to be

uy(x) = u;1(0)x + (u,(0) + a,,(0))y,
uy(x) = (412(0) — a@5{0)x + u,,(0)y,
x€eS,,

where u,4(0), a,,(0) are given by Egs. (5.10), (5.13)-(5.15) in
terms of known constants u%,4(0), a9, (0) defined in (8.10d),

(8.11)
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(8.10e), and (8.10f).

We again use the elliptic coordinates x = (£,7) as intro-
duced in Sec. 5 and process the integral equation (8.6}, which
we write as

u {x) =

a

— A/{j Gopp (XX Vs 5 (x)dS
S,

_ A,uL Gy (XX ) [, (X) + 1, (x')]dS’3,

>80 (8.12)
where S, is the region & < £, and we have used the property
G.p,xX') = — G5, (x,x). When we use the inner solu-
tion {8.11) and apply Green’s theorem, the above equation
reduces to
1

s

u,(x)= — Adig, (0)£[G‘“ xxfi+ G, (x,x')i]-fl(x'c)dl'c

~ 40 [y (016 0+ Ty 01§ 5 .

= 44 7,016, X + 016 X' e
&> €&, {8.13)

where i and j are the unit vectors along the x and y axes and
dl ¢ is the element of length along the elliptic contour C,
whose equation is & = &,, and constants

Uop(0) = 5 (X') = up(0) + a,5(0), X'€S,.

We we substitute the values of Green’s functions from Eq. (2.7) in (8.13), we readily obtain

ui(x)
¢ 1 1 & 1 1\ &
=44 A vy - = — - —
- {810) + 2 uun(on[# v +( e i+ a0+ 20| (5 - )5 |
¢ 1 1 &
—Apu, —_— 24— - = } 5 ] , .
+ o5 M) Tttt + [+ (g ) e e 8.142)
= <t 0]+ 28, 0) (- - =) T+ 4 0) + 2200
M, 9xdy 1 - 86 115,(0))
1 & 1 1 & 1 1 &’
s G ) Sl ol 2) 2 - 2)
(5 S+ | (9 + (7 o)+ (5 o]
E>&, (8.14b)
where
2T 2
I(x)= f (R?InR ), _ ., sinh&, cosp'dy’ = c{sinh&,{[ le™ *cosh3g, — Je ~fcoshé,| cos3y
7=0
— [efcoshé, + Le ~ *coshé, + e ~#(3coshé, + icosh3&,)Jcosn — dcoshEcashécosnln(ce® /2)}, &> &, (8.15a)
2
L(x) = J O(R ’InR ), _ , coshgsiny’ dny’ = je*meoshéof | g~ *sinh3g, — fe ~ *sinhg,| sindy
=
— [efsinh&, + le ~ **sinh&, + e ~# (§sinh3€, — 3sinhé,)sing
— 4sinh¢ sinh&, sinyln(cef /2)}, &> &, (8.15b)

and we have used the relations
Ri=ix—x'*=

and

2 = e "
InR = —ln(——) -2
§-mn(7) -2

To obtain the expressions for « (x) and 45 (x) from for-
mulas (8.14), we require the differential operators

J 1 ( ad a )

— = hé cosp— — coshé sing—|, (8.16

pralialiers Gl '3 7785 coshé mza (8.16a)

ad 1 ( ) a )

—_— = cosh¢ sinp —- + sinhé€ cosnp—|, (8.16b

o 7 & sinm 2% & cosn n ( )
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3
{cosh(n& 'Jcosnncosnn’ + sinh(né "Jsin n  sinn 7'},

(€*/2){cosh2& + cosh2€ ' + cos2n + cos2n' — dcoshfcoshé ‘cosncosy’ — 4sinhésinhé ‘sinysing’}

§>8"

and the relation 4 2 = cosh?¢ — cos’y. Now, we substitute
the values of the integrals 7,(x) and I,(x) from (8.15) in (8.14)
and use the above formulas to obtain the required expres-
sions for the exterior displacements 7} (x), 5 {x) in the elliptic
coordinates. From these solutions we can evaluate the outer
stress field 75,5(x) or 7,4(x). All these expressions are quite
cumbersome except the expression for 7, (x), which is of
great physical significance to evaluate the stress intensity
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factor. When the guest elliptic cylinder is a cavity, 7, (x) is

cApu,(0)[ 9 9w :
+ __2_[ (V2L,(x)) + aX(V Lx)} £>8&

given as 47M, ;7; @18

TaalX) = Toa (X) + Tog (X) = T + 24, + 4, )t o (%),

£> &, (8.17)  But, by using (8.15) and (8.16), we have
The value of u, ,(x) needed in the above formula follows, VAI,(x)) = — 4 sinh2&, e ~4cosy,
from Eq. (8.14), to be VAL(x)) = — 4msinh2Eefsing, €&,  (8.19)
Upo(X) = 17-;{, {AAu,s(0) + Muu,l(O))(;ix(VZI 1(x)) 1Substituting relations (8.19) in (8.18) and again using formu-

¢ 3., as (8.16) we have
+ g;M—‘(AM&s(O) + 24#“22(0))5(V L{x))
|
v (x) = (Ausinh2£0)[(cos27 — e~ )(u,(0) — up(0)) + 2sin29u,,(0)] L EE, (8.20)

M, [cosh2é — cos2y]

Furthermore, the values of the coefficients u,,(0), u,,(0) occurring in this result are given by Eq. (3.15), which yield

{la;+7i—a,+ v, +2(1 +44 724p)8,1u5,(0) + @, — v, —a, — 7, + 2(1 + (44 /241)5,)1u3, (0)}

u,(0) — u,,(0) =

where u9,(0) and u%,(0) are given by (8.10d) and (8.10e) while
a,,a.,.B,,71, Y20, are given by (5.12). Similarly, the value of
u,,(0) in (8.20) is given by (5.14) in terms of u$, (0) which, in
turn, are defined in (8. 10f). Thereby, all the terms in (8.20) are
known and u], . (x} is completely determined. When this val-
ue is substituted in formula (8.17), we obtain the required
value of 7, (x), &> &,

The expression for 7 (x) is further simplified when the
guest elliptic cylinder is a cavity. In this case, 4, = u, = 0, so
that Al = — A,, ¢ = — u, and we find from the above
results that

TM,[e*cos2a — 1]

u,{0) — u,,{0) = ) 8.22a
(0 =0 2u,(A, + p\)sinh2§, ( )
28003
ugl0) = — e sinla (8.22b)
4u,(A, + py)sinh2€,
Uz (X)

_ T [(cos2y — e *)(1 — e**cos2a) — e*ssin2asin2y]
2(A, + p,)(cosh2& — cos27)
§> 50’

1

(8.22¢)
and consequently Eq. (8.17) yields
Toaa (x) = T§§(x) + T‘rrr](x)

_ T[sinh2¢ — e*cos2(n — a) + e ~ ¢ ~ Slcos2a ]

[cosh2& — cos2y]
E>&, (8.22d)

Formula (8.22d) agrees with the one given by Muskhelisvili*
and serves as a check on our analysis.

Since, in the case of the elliptic cylindrical cavity
Tee(E0m) = 0, relation (8.22d) yields

T [sinh2£, — e*'cos2(n — a) + cos2a]

[cosh2£, — cos2y]
0<n<27.

s

Ton (50,’7) = y

(8.23)

Hence, the intensity factor 7%, (£,,7) for the elliptic cylindri-
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a7, + Bi6y)
(8.21)
r
cal cavity is
T (0s77)
T:‘;n (§0’77) = _11’._770_
_ [sinh2£, — e*cos2(n — a) 4 cos2a]
[cosh2£, — cos2y | ’
0<n<2r. (8.24)

When we let c—0, £;— 0, £&— 0 such that ¢ sinh&,, cco-

shé,—a, csinh¢, ccoshé—r, then formulas (8.22d) and (8.24)

reduce to the corresponding relations for the circular cylin-

drical cavity,

7, (r3) + 155(nd) = T [1 — (2a*/P)cos2(d — a)],r>a,
(8.25a)

3003 ) = Ty5(a, 3 )/ T = {1 — 2cos2(F — a)},

0>9527, (8.25b)

which agree with the known results.’

When £,—0 in (8.24) we get the corresponding results
for an infinite crack |x| <c,y =0, {z] < o,
[cos2a — cos2(n — a)]

7*.x,0) =
0 [1—cos2n]

, 7] = arccos (x/c),

x| <c. (8.26)
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Time-dependent scattering by a bounded obstacle in three dimensions
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In the present paper we introduce a new method of treating the scattering of transient fields by a
bounded obstacle in three-dimensional space. The method is a generalization to the time domain

of the null field approach first given by Waterman. We define new sets of time-dependent basis
functions, and use these to expand the free space Green’s function and the incoming and
scattered fields. The scattering problem is then reduced to the problem of solving a system of
ordinary differential equations. One way of solving these equations is by means of Fourier
transformation, and this leads to an efficient way of obtaining the natural frequencies of the
obstacle. Finally, we have calculated the natural frequencies numerically for both a spheroid and

a peanut-shaped obstacle for various ratios of the axes.

PACS numbers: 03.40.Kf, 02.30.Jr

I. INTRODUCTION

The radiation and scattering of transient waves have
attracted much past and present interest, and many impor-
tant applications can be found, for instance, in electromag-
netics or geophysics. The standard approach to such prob-
lems is to apply a Fourier (or Laplace) transform. The
transformation back to the time domain may then be cum-
bersome—often asymptotic or numerical techniques must
be employed. Other approaches have also been proposed
working directly in the time domain. Thus one can formu-
late and solve various types of integral equations or one can
solve the wave equation numerically by a finite difference
approach.

In the present paper we introduce a new method to treat
the scattering of transient waves by a bounded obstacle in
three-dimensional space. The method has many features in
common with the null field approach (also called the ex-
tended boundary condition or T matrix method) first intro-
duced by Waterman.' This approach has so far been applied
mainly to stationary problems (but also to static ones),
though by integrating in frequency it is of course possible to
obtain solutions also to transient problems.”

The essential and novel in our method is the introduc-
tion of two new sets of basis functions containing a timelike
parameter instead of the frequency. These functions have a
rather elementary appearance, but it seems that they are not
to be found in the literature. Once we have the sets of basis
functions and the expansion of the Green’s function in these
sets, the same ideas as in the ordinary null field approach can
be used. This leads to a set of coupled ordinary differential
equations in the timelike parameter with constant coeffi-
cients that are integrals over the surface of the obstacle.

These differential equations can be solved by various
techniques. One possibility is to apply a Fourier transform,
and we then have an efficient way of obtaining the natural
frequencies of the obstacle. By this technique we can also
calculate the surface and scattered fields. We have per-
formed numerical computations of the natural frequencies
for both a spheroid and a peanut-shaped obstacle for various
ratios of the axes.
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Il. BASIS FUNCTIONS

Consider the scattering of a transient wave by a bound-
ed obstacle in three-dimensional space. We treat the case of a
scalar field », which thus satisfies the wave equation

o L7
c? ot?

where ¢ is the wave velocity. The surface S of the obstacle
must be sufficiently smooth to allow an application of the
divergence theorem. To simplify the formulas, we take ho-
mogeneous Dirichlet’s boundary condition on S:

ur)=0, ronS. 2.2)

Our origin is chosen somewhere inside S.
By introducing the free space Green’s function G it is
easy to derive the following integral representation’

J dt 'JdS'[u L) 9 Gr5r',t’)
o s an'

2.1)

—G(rrt ')[—a—u(r’,t ’)] ]
on’ 4

u(r,t), routsidesS,
0, rinsideS.
Here d /dn is the normal derivative on S and %' is the pre-
scribed incident field. As in the ordinary null field approach,
(2.3) is the basic formula from which we derive our equa-
tions. The idea is to expand all fields in some global sets of
functions and then compute the surface field from the sec-
ond line of (2.3) and thereafter the scattered field from the
first line.

The explicit form of the Green’s functions is

S(r—r'|/e—(t—1t")

47|r — 1’| '
and its expansion as a Fourier integral and in spherical waves
is

i (" : ,
Girrt')= ——f dow et —1)
2rJ_ &

+ulre) = [ (2.3)

G (r’t;r"[ ') B (24)

@
c

XZj,(wr< /b Mor, /¢)Y, (AY,(F). (2.5)
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Here j, and k" are the spherical Bessel and Hankel func-
tions, respectively, and 7 _ (r_ ) means the smaller (bigger) of
rand 7. We use a normalized real spherical harmonic,

€m 2+1 (I+m) ]1/2
20 2 (Il—m)

Yn (;)E Yaml (6’¢ ) = [

X PT(cosd )(cf’s”'"’), (2.6)
sinmg
wheree,, =2 — §,,, and P["is a Legendre function; o = e,0
(even,odd), m = 0,1,...,/,and / = 0,1,---. The summation over
nin (2.5), of course, denotes a triple summation over o, m, /.
The expansion (2.5) is not quite the form of the Green’s
function that we want. Using it, we would simply obtain the
standard formulas of the stationary null field approach, but
with a frequency integral in the solution to obtain the tran-
sient behavior. We keep the expansion in spherical harmon-
ics in (2.5), but the frequency expansion is now modified.
Multiply by the factor
L dr
Art_. J-

@

do’ explilr — t')w + ©')] = 1, (2.7)
and change the order of integrations to get
Grert')= LZJ dr Rey, (vt W, (rint), r>r.
anJ-w

(2.8)

We have here assumed that 7> r'. The basis functions are
defined by the following integrals:

Rey, (T;r,t) = %J‘ dw e ="~ wa/c)” jlor/c)Y, ()
ﬂ. —
(2.9)
and

Ya(rrt) = —21—7—.]. dw e ="'~ Ywa/c)'+ 'h Nwr/c)Y, (7).
(2.10)

The extra factors of w are introduced to ensure the conver-
gence of the integrals at the origin, and ¢ and the length a
(which is at our disposal} are inserted for dimensional pur-
poses. The integrals can in fact be performed analytically.
For the regular function we obtain the following very explic-
it form*:

Rey, (m;r,t)

0, r<celt—r|,

a2+ \a

(2.11)

That this is indeed a solution of the wave equation is easily
demonstrated, but it seems that this fact has not been noted
in the literature. Differentiating / — k times with respect to ¢,
we easily see that r* ~ (1 — (ct /r)*)*/*P f(ct /r)Y,,(F} is also a
solution of the wave equation. Because of the connection
between the 7 and ¢ dependence Rey, (r;r,¢) is not that ele-
mentary, though. We see that it is unbounded as 7— o, ex-
cept for / = 0 and 1. On the other hand, it is regular at the
origin. The function with / = 0 is exceptional: It goes to zero
at 7— oo, it has a jump discontinuity at » = ¢|t — 7| [whereas
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= —C—(L)'_ 11— o= /PVTL R, rocli—1|.

for! #0Rey, (r;r,¢t )iscontinuous]andithasaé (¢ — 7)singu-
larity at r = O [cf. (2.9)]. Except for the restriction on the
region of validity, Rey, (r;r,t ) for / = Ois in fact a static solu-
tion of the wave equation.

For the outgoing basis function the integration in (2.10)
gives®

w2 $1- 5

k=
X8 =K —t 4+ r/c)Y,(P),
(2.12)

where

En =+ kW2 = k). (2.13)
That this “function” represents an outgoing spherical wave
is immediately clear. As it will always appear in an integral
over 7 or t the appearance of §' ~*) will lead to simplifica-
tions in the following. We note that, apart from normaliza-
tion, ¥,00(0;r — ', — ') is just the free space Green’s
function.

By inverting the Fourier transform in (2.9) we obtain

e~ Y (wr/c)Y, (F) = (wa/c) f ) dre “"Rey, (rir,t).
o (2.14)

This gives us an easy way to relate the expansion coefficients
of the two types of expansions. Assume the following expan-
sions of some sufficiently regular function f(r,z ) (which must
satisfy the wave equation):

sy =5 dof e tor/a¥, 7

= Z f :a’T fu(r) Rey, (rn,t). (2.15)
We then have the relations
folr) = f :dw f.(o)wa/ce (2.16)
and
fulw) = (1/2m)(wa/c)~ r dr f,(r)e". (2.17)

Thus we see that the expansion in our regular basis functions
can be computed with the help of the ordinary Fourier ex-
pansion. In this way it should also be possible to show the
completeness of our regular functions. Similar consider-
ations as for the regular functions hold, of course, also for the
outgoing ones, so there is no need to write down the corre-
sponding equations.

The expansion (2.8) of the Green’s function holds only
for r > r'. By using the reciprocity relationship for the
Green’s function we have for r <7’

Glrar't')=G',—t'sr, —¢t)
= iEJ dr Rey, (10t W, (— 75r', — t'),
ay —
r<r,  (2.18)

where we have also used the fact that Rey, (r;r,¢) is even in
B
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Ill. REDUCTION OF THE SCATTERING PROBLEM

We now return to our scattering problem as stated in
the beginning of the previous section. If we insert the bound-
ary condition (2.2) in the integral representation (2.3), we
obtain

— f dt ’de "Gegr, ') + uie,e)
— oo S

_ [u(r,t ), routsideS, 11
“ 10, rinsideS, (3-1)
where we have defined
uir,t) = [_8_ u(r,t)] . 3.2
an +

To calculate the surface field v(r,# ) we assume that r in
(3.1) is inside the inscribed sphere to S. Inserting the expan-
sion (2.18) of the Green’s function, we obtain an expansion of
the incident field,

ulr,t) = zf dr a,(7) Rey, (r;r,t), (3.3)
where we have the relation
a,(n)= (l/a)J dt|dS ¢, (—7x, — th(r,t). (3.4)
— o0 S

The coefficients g, (7) of the incident field are, of course, re-
garded as known. To compute v(r,? ), we therefore only have
to invert (3.4). Employing the explicit form (2.12) of the out-
going basis function, we obtain

a,(r)= (l/a)de Y, (AD V(rjv(r,t)

’ (3‘5)

t=1—r/c

where the differential operator is

3alis e

To proceed, we must make some kind of expansion of
the surface field v(r,? ). There are several alternatives for this,
the regular or outgoing basis functions, for instance. For
reasons which we will soon discuss we make the following
expansion in spherical harmonics:

D‘”()

v(rt) = (1/a)Y v, (t + r/c)Y,(P), (3.7)

where the functions v, (¢t 4+ r/c) are to be determined. Insert-
ing this in (3.5) gives

1—k {1—k)
Sya(d) bt 68

n k=0

a,(r)=
where we have introduced the matrix
Q f,,, = (l/az)JdS (a/r)" 'Y (AY, (. (3.9)
S

It is now apparent why we choose the argument in v, in (3.7)
to be ¢ + r/c (a more immediate choice would be simply 7).

Another choice would have given an r-dependent argument
in v, in (3.8), and thus v, would have to appear in the inte-

grand in the surface integral. For a sphere it is clear that the
expansion in (3.7) is complete, but for a nonspherical obsta-
cle this is not evident, though certainly to be expected with
suitable restrictions on the surface S. Furthermore, our nu-
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merical results (see the next section) indicate that this expan-
sion is useful also for nonspherical obstacles.

The problem of calculating the surface field is thus re-
duced to the simpler problem of solving a system of coupled
linear differential equations with constant coefficients. This
is a thoroughly studied field, and there exist many methods
for obtaining the solution. One possibility is to apply a Four-
ier transform, a method which we will study in more detail in
the next section.

Once we have calculated the surface field, there remains
the calculation of the scattered field u° = u — . Takinganr
outside the circumscribed sphere to S in (3.1} and inserting
the expansion (2.8) of the Green’s function, we obtain

wiet) =3[ drfmne), 3.10
where the expansion coefficients are given by
fr)= — —1—J dt| dS Rey, (r;r,t Ju(r,t). (3.11)
aJ-o Js

If we use the explicit form (2.12) of the outgoing basis func-
tion, we have

wirt) =Y Y, (ADIr f,(7)

where the differential operator is defined in (3.6) above. Here
7 plays the role of retarded time. Formulas similar to (3.12)
have been given by Granzow.®

The expansion of the scattered field can in fact be writ-
ten in a more explicit form. From (3.11) and (3.12) we have

w(r,t) = (@/N Y ba(rt — r/c)Y,(A), (3.13)

, (3.12)

T=t-—-r/c

where [using the explicit form (2.11) of the regular basis
function]

b,(r7) = — Zg‘,k( )J dt dS’

x[a“_k) Rey, (rir’ t)]v(r 2)

o
c d 1)1+k+1 3
=7§0 2+ k!

T+ r/c 2(¢ _ 2 7k/2
xde'(r')k—'f dt[l———c 7 ]
S T—r/c r’

fo‘( cr— . ))Y Fole'st)

IR NES

adr=0

)l+k+x

2k+1k|

1
Xf dx (1 — x3*2P ¥x)
—~1

X fds '(’—'>kyn (f’)v(r',r _ i)
S r c

We note that the solution of the wave equation mentioned
below (2.11) enters here. The scattered field is thus obtained
from the surface field by an integration over the surface and
a further integration over the time interval that can contrib-
ute. In the far field only the first term in the summation over
k in (3.14) contributes.

(3.14)
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Another, and more traditional, way of obtaining the
scattered field is to use the explicit form of the Green’s func-
tion in the integral representation. Thus (2.2), (2.3), and (2.4)

give
wr,t) = J-de' —I———v(r’,t - ﬂ:—’—') (3.15)
4 Js r—r| ¢
which in the far field reduces to

us(r,t)=—1— dS'v( ”)

warJs (4

(3.16)

As these equations contain no integration in time, they are
possibly more advantageous to use than (3.13) and (3.14). On
the other hand, (3.13) and (3.14) give the scattered field as a
sum of spherical harmonics, and this can sometimes be a
desirable feature. The surface integral in (3.14) is, further-
more, simpler than that in (3.15).

{V. CALCULATION OF NATURAL FREQUENCIES AND
NUMERICAL EXAMPLES

We now study one way to solve the equations of the
previous section. Multiply (3.8) by ¢*” and integrate:

2”( ) l dTa L(Te

i’y 25&( zwa)

n k=0

ﬁ,,—l—J. dr v, (t)e".
2r)_ .

(4.1)

The left-hand side of this equation is just the expansion coef-
ficient in a Fourier expansion of the incident field, cf. (2.17).
Thus we have

a,lw) = ZW,,,, (w)%fj dr v, (r)e™", (4.2)
where
Wolo) =i 'S £l — iwa/c)= Q% 43)
k=0

Formally solving for the expansion function of the surface
field yields

v,(r) = ZJ- do W \wa, (e (4.4)

If all the singularities of W ,.'(w) are known, we can cast this
equation into a more convenlent form. For a sphere with
radius a we have

Wolo) = 26~ oep (225, (.5
¢
so there are only simple poles in this case. We likewise as-
sume that only simple poles of W .'(w) in the third and
fourth quadrants (symmetrically sntuated) will contribute
when the integral in (4.4) is closed in the lower half-plane.
The surface field then becomes

oiet) = — fzan (0,0, r) exp( — i, 1), (4.6)
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where

@plr) = 2172 ResW .} (o)

©=w,

Y, (F) exp( — iw,r/c)

(4.7
and w, are the zeros (assumed simple) of
det[W,, (@)] =0. (4.8)

Of course, (4.6) is only valid for times such that the closing of
the integral in the lower half-plane is legitimate—for earlier
times the integral must be closed in the upper half-plane and
we then expect the surface field to vanish. When calculating
(4.6), we assumed that the expansion coefficient a, () of the
incident field has no poles. If it has, the corresponding con-
tributions must be added to (4.6).

Once the surface field is computed by means of (4.6) [or
(4.4)], the scattered field can be obtained by employing
(3.13)~(3.16), and we have thereby solved our scattering
problem. However, the computational aspects of our theory
and comparisons with other methods still remain to
investigate.

To represent the solution in terms of natural frequen-
cies w, and corresponding natural modes as is done in (4.6) is
not new. Derived in a completely different manner, it is often
referred to as the singularity expansion method (SEM).”

There exists another way of deriving the equation that
determines the natural frequencies of the obstacle. If we use
the ordinary null field approach, we have in analogy with
(3.4) an equation relating the expansion coefficients for the
incoming field and the surface field (in the frequency
domain)

a,(w) = —de h “'( )Y (Pv(r,w). (4.9)
Expanding the surface field in spherical harmonics,

vrw)=e” i“”/cza,,(a))Yn(F), (4.10)

and inserting this and the exact sum for the spherical Hankel
function, we arrive at the conclusion that the matrix relating
a,(w)and a, (o) is essentially W, . (w). Thus we get the same

an

FIG. 1. Spheroidal obstacles withd /b = 1, 0.6, 0.4.
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FIG. 2. Peanut-shaped obstacles withd /b = 1, 0.6, 0.3.

form for the equation determining the natural frequencies as
with our more elaborate procedure in the time domain.

To illustrate the applicability of our formalism, we now
turn to a few numerical examples. We will compute the natu-
ral frequecies for some simple obstacles by using Eq. (4.8). By
inspecting {4.3) we note one very important fact about the
matrix W, . (o), namely that the frequency dependence is
explicit and not in the surface integral defining Q %,.. For a
given obstacle we therefore first compute (by numerical inte-
gration) and store Q ¥ ., and then it is an easy and fast task to
compute det[ W, (w)] for various values of w.

We consider rotationally symmetric obstacles, but we
compute natural frequencies also for other values of azi-
muthal order m than m = 0. We first take an origin-shifted
spherical obstacle with radius a and shift of origin b. We
must then use our full formalism, and this is a good check on
both the analytical and numerical performance of the meth-
od. Forashiftb /a = 0.5and truncation/_,, = 15 [the maxi-
mum value of / used in (3.9), (4.3), and (4.8}] we obtain the six
first natural modes (the zeros of 4", / = 1,2,3,4) to seven
correct figures.

imp
FIG. 3. The locus of the natural frequencies for a prolate spheroid for

m = 0when0.4<d /b<1. Thenatural frequencies ford /b = 0.4,0.6, 1 are
indicated on the curves with the arrows pointing away from d /b = 1.
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FIG. 4. Same as in Fig. 3 but form = 1.

Numerical computations of natural frequencies have
been performed for two different kinds of obstacles. The first
is a spheroid (see Fig. 1), where the equation for the surface is

r6) = bd (b*sin’0 + d * cos’0) "2, (4.11)

and the second is a “‘peanut” (see Fig. 2), where the equation
is
HB) = (d?sin’0 + b cos?6)"/~. (4.12)

The peanut has the merits of a simple defining equation and
of being an example of a body that is not wholly convex. In
both (4.11)and (4.12) wecan haveb>dord > b; b > d gives a
prolate spheroid or a peanut and d > b gives an oblate spher-
oid or an “apple” (the body one gets by rotating the curve in
Fig. 2 around the x axis). The parameter a is chosen equal to
the radius of the sphere circumscribing the obstacle, i.e.,
a = b ora = d depending on b >d or d > b, respectively.
Twelve natural frequencies have been computed for our
obstacles. For the limit of a sphere this corresponds to the
zeros of A Y for / = 1,...,6. As the zeros appear in pairs sym-
metrically located in the third and fourth quadrants (except
when they are purely imaginary), we only give the locations

Imp

FIG. 5. Same as in Fig. 3 but for m = 2.
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FIG. 6. The locus of the natural frequencies for an oblate spheroid for
m = 1 when0.4<b /d< 1. The natural frequencies for b /d = 0.4,0.6, 1 are
indicated on the curves with the arrows pointing away from b /d = 1.

in the fourth quadrant of the dimensionless frequency

p = wa/c. Depending on how much the obstacle deviates
from a sphere, we have used truncations /_,, ranging from
15 to 31 [as the even and odd ! values decouple in (4.8), the
maximum matrix size is thus 16 X 16]. This gives errors in
the natural frequencies that are expected to be less than 1%.

In Figs. 3, 4, and 5 we show the natural frequencies for a
prolate spheroid for m = 0, 1, and 2, respectively. The ratio
between the axes varies fromd /b = 1 tod /b = 0.4, and the
locations for d /b = 1, 0.6, and 0.4 are indicated on the
curves (with an arrow pointing away from d /b = 1). Com-
paring the figures, we note that the m dependence of the
natural frequencies is not very pronounced, but that at least
for the first few modes the frequencies grow with increasing
m. For m = 2 the first mode is, of course, missing.

To compare different kinds of obstacles we show in
Figs. 6, 7, and 8 the natural frequencies for m = 1 for an
oblate spheroid, a peanut, and an apple, respectively. In Fig.
6 the axes vary from b /d = 1 to b /d = 0.4, in Fig. 7 from
d/b=1tod/b=0.3,andin Fig. 8fromb/d=1to
b /d = 0.3. Comparing spheroids (Figs. 4 and 6) with peanuts
(Figs. 7 and 8), we observe that the natural frequencies for
the former changes more from the spherical ones. At least
partly, this may be a volume effect as a peanut has a larger

Rep

o i hY .
RS s

‘? I \X\\

Imp

FIG. 7. The locus of the natural frequencies for a peanut for m = 1 when
0.3<d /b< 1. The natural frequencies ford /b = 0.3,0.6, 1 areindicated on
the curves with the arrows pointing away fromd /b = 1.
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FIG. 8. The locus of the natural frequencies for an apple for m = 1 when
0.3<b /d<1. Thenatural frequencies for 4 /d = 0.3, 0.6, 1 areindicated on
the curves with the arrows pointing away from b /d = 1.

volume than a spheroid when the axes are equal. The most
clear difference between prolate (Figs. 4 and 7) and oblate
{Figs. 6 and 8) obstacles is the much smaller change in the
first natural frequency for the oblate obstacles.

V. CONCLUDING REMARKS

So far we have considered the scattering of a time-de-
pendent scalar field by an obstacle on which the field obeys a
homogeneous Dirichlet’s boundary condition. There are,
however, some aspects of the present approach that should
be further investigated. Thus the completeness of our expan-
sion of the surface field should be proven, and there are sev-
eral unsolved questions concerning the poles of W ' (w).”®
Furthermore, more computations should be performed, in-
cluding computations of both surface and scattered fields.
Also other methods of solving the ordinary differential equa-
tions (3.8) should be tried, and this could be useful, especially
for early times.

Other boundary conditions on the surface of the obsta-
cle are of interest. Homogeneous Neumann boundary condi-
tions will not involve any particular difficulties, but if we
consider a penetrable obstacle, the problem becomes more
intricate. The integral representation for the interior must
then be used also, and this may lead to useful formulas.

Another very interesting generalization is to treat the
more complex electromagnetic and elastic cases. The com-
plication then is the vector character of the fields. The usual
way of defining the vector basis functions from the scalar
ones can still be used, however, so these cases should be pos-
sible to handle.

A more far-reaching generalization would be to consid-
er multiple-scattering problems. For stationary waves many
cases can be handled efficiently by the null field approach,
and it seems possible that these ideas in conjunction with the
present work could be applied to treat time-dependent multi-
ple scattering.
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We point out that the evolution of a quantum system can be considered as a parallel transport of
unitary operators in Hilbert spaces along the time with respect to a generalized connection. The
different quantum representations of the system are shown to correspond to the choices of cross
sections in the principal fiber bundle where the generalized connection is defined. This interpre-
tation of time evolution allows us to solve the problem of the formulation of the evolution of a

quantum particle in a four-dimensional gauge field.

PACS numbers: 03.65.Bz, 11.10.Np

I. INTRODUCTION

The motion of a nonrelativistic particle in the space-
time R* under the action of a four-dimensional electromag-
netic gauge field 4,, is governed by the Schrédinger equation

500, — ied,(x Poixc )

_ L
2m j=1
— edyx,t J(x,t), (1.1)

¥ being the wave function of the particle, e and m its electri-
cal charge and mass. We will use natural units c =#fi= 1.

The quantum meaning of this equation is that the evolu-
tion of the system is governed by a time-dependent Hamil-
tonian H (¢ ) whichis at each time ¢>0 a self-adjoint extension
in L %(R?) of the elliptic operator

i—g—tz//(x,t)z

3
_ L 3 (3, — ied;{x,t ) — edox,). (1.2)
2m j=1
Such a self-adjoint extension is usually obtained by consider-
ing first a self-adjoint extension of the positive symmetric
differential operator

| G , 2

Py j;l(ﬁj ied;(x,t))
acting on functions with compact support and then switch-
ing on the potential term — eA(x, ) as a perturbation.' The
first step is always possible because of the Friedrich theorem
about extensions of positive symmetric operators. But the
second one requires that the nonpositive part of 4,(x,? ) be-
longs to L= (R*) + L *(R*) for any time ¢, and this is not al-
ways the case. Therefore, for a wide class of differentiable
electromagnetic gauge fields, this standard mechanism, due
to Kato, to give a quantum sense to Eq. (1.1}, does not work.
Moreover, if a differentiable gauge field for which such a
mechanism works is given, then by a simple change of gauge
we can obtain gauge potentials representing the same gauge
field for which the mechanism does not work. However,
quantum mechanics must be gauge invariant. Furthermore,
if the particle and the electromagnetic gauge field are not
defined in R*, but in a more general space-time of the type
M X R, M being a three-dimensional spacelike manifold, the
equation corresponding to (1.1) has only a local sense’ when
the gauge field is defined in a nontrivial fiber bundle
PM X R,U (1)). This difficulty can be avoided for the part
corresponding to the first term of (1.2) by considering the
wave functions, not as ordinary functions, but as cross sec-
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tions of the bundle associated to M X {0},U (1)) by means of
the natural action of U (1) on C, which gives an intrinsic for-
mulation to this first term. On the contrary, the perturbation
term has only a local sense and we do not know how to apply
the standard approach in such a case.

The aim of this paper is to try to avoid all these prob-
lems by giving a new geometrical sense to the quantum
evolution.

This geometrical sense was suggested to us by the simi-
larity existing between the expression for the time-evolution
operator of a quantum system with a bounded time-differen-
tiable Hamiltonian H (¢ ) given by

Ult)= Pexp{ - ifotH(t \dt }

=1+ 3 (- i)kfot d, L fo r, Hit)-H ()

= (1.3)

and that of the parallel transport operator in R” X R™ along a
curve y:[0,r ] >R" with respect to a connection I in
R"x GL{m,R), which is given by**

T, = Pexp{ - J;F#a’x"(y)]

=14 121 J;dt'Jo '...J;kf' dt, T, (1))
X T, [t ()Yt ), (1.4)

where o*(w) = I, ,dx*, » being the 1-form of the connection
I', and o:R*—R*X GL(m,R) being the section o{x) = (x,I).

This analogy suggested to us that we could interpret
quantum evolution of a system with bounded Hamiltonian
as parallel transport along time. One can hope to exploit this
interpretation in order to generalize the geometrical setting
of quantum evolution in a way that makes possible the phys-
ical description of the evolution of a quantum particle in a
four-dimensional gauge field. This is possible, as we will
show in this paper. We will find a geometrical approach to
quantum mechanics in the fiber bundle language, where the
quantum evolution is interpreted as the parallel transport
with respect to a generalized connection, and this permits us
to define the quantum evolution of a particle in a gauge field
in that setting. Moreover, this leads to a deeper understand-
ing of the meaning of the evolution postulate.
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The structure of the paper is as follows. In Sec. 2 and 3
we set up the mathematical tools necessary for our purposes.
We define the concept of generalized connection. In Sec. 4
we state the geometrical formulation of time evolution. Sec-
tion 5 is devoted to displaying in this geometrical setting two
special systems: a nonrelativistic particle in a scalar potential
{case a) and a nonrelativistic particle in a four-dimensional
gauge field (case b). In the latter case, we show explicitly that
although there is no canonical identification between the
state spaces at different times, it is possible to define the
dynamics intrinsically.

11. DIFFERENTIABILITY ON UNITARY GROUPS

Let 7% be a complex separable Hilbert space, and
B (7) be the Banach space of bounded operators in #”. The
set of bounded invertible operators in ##” with bounded in-
verse, .L (%) = {A€RB (#); A ~ '€ ()}, is an open Ban-
ach submanifold of % {5°). Furthermore .#(#°) endowed
with the usual composition law, becomes an infinite-dimen-
sional Lie group. Its Lie algebra is Z(#°) where the Lie
bracket product is defined by [4,B] = i{4B — BA ).

The set o ., of bounded self-adjoint operators in 77,
A 5, = |A€H (7 ); A* = A }, is a Lie subalgebra of Z ()
which generates the unitary group % (#°) through the expo-
nential map. Therefore the unitary group % (#°) is a closed
Lie subgroup of .¥(#°).

Now, since the curves described in % (5°) by evolution
operators in quantum mechanics are not always differentia-
ble, we must consider another topological structure in the
unitary group which is more relevant for quantum mechan-
ics. It is the s-topology whose open sets are generated by the
sets

By ={U'e%(#);||Ux, — U'x,|| <€, i=1,.,n},

with Ue% (#), € > 0 and x,e5. If 7/7s finite-dimensional,
the s-topology and norm topology coincide. The unitary
group % (#°) is also a topological group when endowed with
this topology, because of the joint continuity of the group
operation. Notice that we could define an s-topology in

H () and .2 (7)) in a similar way, but in such cases the
composition law is not jointly continuous; therefore .7 (")
would not be an s-topological group.

Now we are going to introduce a concept of s * -differen-
tiable curve in % (#°) which is compatible with the s-topol-
ogy.

Definition: An s-continuous curve U:[0, o0 }—> % (%) is
s+ -differentiable if £ (U) = {x&5¢; Vre[0, ),

3s-lim 4 ~'[U(t + 4 )x — U(t)x]}, is a dense subset in 5%
A-07
In & (U) we define the operator D U (¢) by

D Uly=s— lim 4~ [Ult+4x—Ult)k].

The group % (5#°) acts on the set of curves in 57~ by left
(right) translation. The set of s* -differentiable curves is in-
variant under this action.

Proposition: Let U (t) be an s *-differentiable curve in
U (). For every t€[0, « ), the operator 4 (¢ ) defined in #” by
id (t) = U*(t)D * U (r),isanessentially self-adjoint operator.
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Proof: Let x be a point in (U ). Then,

Jim 4 ~H|U (e + Al — U ()]}

= lim 4 7{Jix|] — {Ix]|"} =0,

and therefore (D * U (t}x,U{t)x) + (Ut x,D * Ut )x) = 0;
so that, (4x,x) = (x,4x).

This relation holds for any xe 2 (U ), which implies that
A is a symmetric operator.

Now we must proof that the only vector ueZ (4 *)satis-
fying 4 *u = + iuisthezero vector in #°. This proof may be
carried out following standard proofs for the particular case
of U (t) being a semigroup of unitary operators (see, e.g., Ref.
6).

According to this proposition any s* -differentiable
curve in % (") defines for each >0 a self-adjoint operator in
7, the closure of 4 (¢), which will also be denoted by 4 (¢).

Definition: Two s™ -differentiable curves U, and U, in
() are said to be tangent at U,e % (77} if there exist
1,,1,€[0, 0} such that U,(t,) = U,(t,) = Uyand 4,{t,) = A,(t,).

This definition gives an equivalence relation in the set of
all the s ™ -differentiable curves passing through U,. We de-
fine the s-tangent space of % () at U, as the set of the
equivalence classes (tangent vectors) in that relation. Then,
there is a bijective canonical correspondence between the s-
tangent space at any point U, of % (5) and the set o7 (#°) of
self-adjoint operators in 5#°. The onto character of this rela-
tion is obvious, because if 4 is a self-adjoint operator, Uye™ is
an s " -differentiable curve whose s-tangent vector at U, cor-
responds to 4.

The left (right) translation of the curves in % (#°) by the
left (right} product by any element U of % {#”) induces an
isomorphism between the tangent space of % (%) at any
point Uye % () and the tangent space of % (7% at U,U.
Since the tangent spaces of % (#°) at U, and at U,U are
canonically identified with (57", this isomorphism in-
duces a transformation in ./ (#°). It is easy to show that this
transformation does not depend on U,. Hence, % (5%°) also
acts canonically on ./ () on the left (right). It is easy to
prove that this left action is trivial, because the field of s-
tangent vectors of % (#°) corresponding to the same element
of &/ (#°) is invariant under left translations. In the same
way we can show that the right action coincides with the
action of % (7°) on &7 (*°) defined by

ad(U*4 = U*4U
for any Ue% (57, Ae.o (7).

Accordingly, o/ (#°) has some of the properties of a Lie
algebra of a Lie group, i.e., it is a kind of “Lie space” of the
topological group % (7).

11l. UNITARY PARALLEL TRANSPORT AND
GENERALIZED CONNECTIONS

The norm and strong topologies defined in % () give
rise to two different concepts of topological principal fiber
bundle with structural group % (#°) and base space R™, the
set of nonnegative real numbers. Since the s-topology of
% (#°) is the relevant one for quantum mechanics, we have
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to consider principal fiber bundles with this topology. How-
ever, % (#°) does not have a differentiable structure compa-
tible with the s-topology, and, the problem is how to define a
concept of connection in such a fiber bundle. Since there is
no differentiable structure in Z(R™*, % (7)) there are
neither tangent spaces nor horizontal spaces and conse-
quently the only way to introduce a connection is by means
of that of parallel transport. The base space being contracti-
ble and one-dimensional, Z is trivial and the parallel trans-
port is path-independent and can be formulated in terms of
cross sections.

Definition: A generalized connection @in 2 is a family
{0, }ser Of continuous sections of Z such that

(i) for every u,eZ there exist one €/ such that
05(t,) = ug, where ty, = 7., (uy).

(ii) given any pair a,B€l, there exists one Ue % (5) with
0,(t) = oyt )U for any £>0.

Notice that condition (ii) implies that the family
{0, ] aes is fully determined by any one section of the family.

Definition: Two cross sections o and o’ of Z are said to
be s*-differentiable equivalent if the curve U in % (#°) de-
fined by o'(t) = ot )U (1), is s " -differentiable.

The cross sections o, of the family @ are s* -differentia-
ble equivalent and will be said to be parallel with respect to
o.

Let p = % (5°) X V—F be a continuous left action of
% () on a topological space ¥V and &(R™,V, p) the corre-
sponding associated fiber bundle. For every o, in the family
@ and any veV, we can define a section ¢% in & by
Y(t) = [o,(t),v], where the bracket means the element of
# corresponding to the equivalence class of (¢, (¢ ),v). Then,
it is easy to check that ¥ = 5, when o, and o, are relat-
edbyo,(t) = o, (t)U. Thus, the set {¢/7} ., does not depend
on « and the sections of such a set will be said to be parallel
sections in # with respect to ©. Note that forany ¢, e '(t,)
there is one parallel section ¥(t ) with ¢(t;) = ¢, .

Definition: A cross section o of Z is s -differentiable
with respect to @ if ¢ is s -differentiable equivalent to the
parallel cross sections o,

To every cross section ¢ in & s+ -differentiable with
respect to @ we can associated an & -valued 1-form o, of
R™ by means of the expression

a
@, ( at) =A(t), (3.1)
where A4 (¢ ) is the self-adjoint operator corresponding to the
tangent vector at o{t ) to the curve U (s) in % (7"} such that
ois) = o, (s)U (s), o, being the only parallel section of @ with
o,(t) = olt). The 1-form w,, is said to be the connection 1-
form of @ in the cross section o.

Note that @ does not define a connection 1-form in &
but only a 1-form w, on R™ for every cross section ¢ in Z.

IV. THE GEOMETRICAL SETTING FOR QUANTUM
MECHANICS

According to the first postulate of quantum mechanics,
every state of a quantum system at a time 7 is described by a
ray of a Hilbert space #°,. We will assume that the corre-
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spondence physical states-rays of 7%, is bijective, i.e., we
will neglect the possibility of the existence of supeselection
rules, for the sake of simplicity. On the other hand, the pos-
tulate referring to quantum evolution is not so clearly stated
but it contains implicitly two points: the first one is the as-
sumption that there is a canonical identification of the Hil-
bert spaces corresponding to different times; the second one
that the evolution is described by the Schrodinger equation,
namely, it is possible to choose at every time ¢ a vector repre-
sentative ¢(¢ ) of the ray such that with the above identifica-
tion the differential equation describing the evolution is
idy/dt = H (t )y(t ), where H (¢ } is the Hamiltonian operator.
Notice that in the particular case of H:R*—.«7 , being a
differentiable function, the expression (1.3) is meaningful
and the solution of the evolution equation is given by

Yir) = Ut )¥(0).

This way of introducing the evolution postulate de-
serves some comments: first of all, if the Hilbert spaces cor-
responding to different times are really different, the space of
states in not a Hilbert space but a Hilbert bundle which
seems to be a Hilbert space because of the trivialization pro-
vided by the “canonical” identification of the different fi-
bers. Such identification is needed in order to compare vec-
tors at different times (e.g, to define /3t ). Now, it is well
known from elementary differential geometry that vectors in
different fibers of a vector bundle can be intrinsically com-
pared by means of a parallel transport, i.e., by means of a
connection. This way of comparing vectors at different times
is intrinsic and has no need of a ““canonical” identification
between fibers. For instance, expressions like dy/d¢ can be
replaced by covariant derivatives of sections along the time.
In this setting the space of states will not be a Hilbert space
but a Hilbert bundle and the evolution of a state will be de-
scribed by a cross section in such a Hilbert bundle, rather
than by a curve in a Hilbert space. Then, the evolution will
become a parallel transport in the Hilbert bundle, which ex-
plains the formal analogy existing between (1.3) and (1.4}.

Accordingly, we propose to formulate the postulates of
quantum mechanics as follows:

Postulate: A quantum system is described by means of a
differentiable Hilbert bundle & (R*,5°) with base R™*, typi-
cal fiber ##°, and Hermitian structure 4. At every time >0,
the state of the system is described by a ray in the fiber
7z \(t).

Next, we proceed to build up a principal fiber bundle
P(R™, % (7)) for which &(R™,) is an associated Hilbert
bundle. Let 7, denote the set of orthonormal bases of
7 \(t), and P = U P, be the disjoint union of sets Z,.

120
Once an arbitrary but fixed orthonormal basis {e, },.x of #°

is given, we can define a right action of the unitary group
(%) on Z as follows. For any orthonormal basis

u = {u,} .y of 7 ') and every Ue% (#°), we define the
orthonormal basis v = uU by

v; = Z (e;,Ue;)u;.

j=1
The right action of % (%"} on & endowes it with an s-
principal fiber bundle structure Z(R*, % (5°)). Every cross-
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section of Z will be called a gauge of the quantum system.
When the natural action of % (#°) on 7 is considered, it is
easy to see that the fiber bundle associated to & is & .

The left adjoint action of % (#°) on % (#°) endowed
with the s-topology generates a vector bundle % (R ™, % (7))
associated to . Every element ReZZ can be considered as a
bounded operator of the Hilbert space 7 '(7, (R )) of the
Hilbert bundle & as follows. Let u be any point in
7, (7, (R)) and let B be the element of Z () such that
R = [u,B] ;. For any éem; (7, (R)) there exists a Y%
with € = [u,1] . Then, we define RE = [u,BY] .

Postulate: Each observable of the quantum system is
described by a cross section p of the fiber bundle
RB(R™,% (7)) such that p(z ) is a bounded self-adjoint opera-
tor in 7 '(¢) for any 0.

Notice that for unbounded observables we can consider
at each time 73>0 their imaginary exponentials, which are
bounded unitary operators, and hence describe them by con-
tinuous sections of # too.

The translation to this new frame of the postulates con-
cerning the correspondence rules, expressed in terms of
probability, between the mathematical model and experi-
mental facts is straightforward.

As we are considering the absence of superselection
rules, there is at every time ¢ a complete system of commut-
ing observables. For the more general case with superselec-
tion rules see, e.g., Ref. (7) and references therein. A choice of
such a complete system provides a “basis” of physical states
at every time ¢. This gives an identification of states spaces at
different times up to the choice of relative phases on the
vectors representing the basic states. The observables of the
complete system become constant after this identification.
Next, we formalize these facts in the geometrical framework
we are proposing.

As it is well known, the existence of a complete system
of commuting observables is equivalent to the existence of a
maximal abelian subalgebra of observables.

A maximal abelian algebra 3 of observables of the sys-
tem is described by a family {p, } .., of sections of Z such
that for every >0, {p,(¢)} ., is a maximal abelian algebra of
bounded normal operators in 7 '(¢).

Definition: A cross section o of Z is said to be a gauge
tied to X if for any p,€3 there exists a bounded normal oper-
ator R,€e# (%) such that for any 70, [o(t),R,] = p:(t), 1€,
the sections p, are constant in the trivialization of % gener-
ated by o.

Every maximal abelian subalgebra of observables has
gauges tied to it. However, this gauge tied to 2 is not unique.
In fact, if o is such a gauge, then the section o of Z, defined
by

a(t) = o(t)U, (4.1)
U being any operator in % (5°), is also a gauge tied to 2.
Moreover, two gauges tied to 3 may be not differentiable-
equivalent. Indeed, if fis any continuous, nondifferentiable
real function of R* and o is a gauge tied to =, the gauge o’
defined by

o'(t) = oft )’ (4.2)
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is also tied to 2, and is not differentiable-equivalent to o.
This fact is a consequence of the projective character of the
quantum states, and it points out that the identification of
states spaces at different times by means of a gauge tied to X
is not canonical, as is assumed in standard formulation of
quantum mechanics.

We shall now consider the dynamics of the system. It
describes the evolution of the states from time ¢ = 0 to time
t>0in a continuous and unitary way. More precisely, the
time evolution of the system will be given by a sheaf of nonin-
tersecting continuous sections in & which preserves linear-
ity and the Hermitian structure of #, and such that reach
any point of €. In our framework the evolution postulate
can be stated as follows.

Postulate: The evolution of the quantum system is given
by a generalized connection @ in Z7. The evolution of a state
1, of 4 '(0) is given by the parallel cross section #(¢ ) of &
with ¥(0) = ¥,

Following the standard formulation of quantum me-
chanics, we assume that any maximal abelian algebra of ob-
servables of the system has tied to it a gauge differentiable
with respect to @. In particular, this implies that for any two
maximal abelian algebras of observables 2, 2 ' there exist two
gauges tied to 2 and X', respectively, which are differentia-
ble equivalent.

Let us consider a fixed gauge ¢ tied to a maximal abe-
lian algebra of observables 2 which is differentiable with
respect to @.

Proposition: Let U be the differentiable curve in % (%)
givenby ot ) = o(t }U (t ) where o, is the parallel cross section
of Z with ¢,(0) = ¢(0). Then U is the solution of

DTU(t)= —id(t)U(¢) (4.3)
satisfying U (0) = I.

Proof: Let o,(s) be the parallel section of ® with
0,(t) = o(t) and V, be the curve in % (#°) defined by
ols) = o,(s)V.(s). Then, w,(3/0t)=id (t)= V*t)D " V().
Since o, and o, are parallel, o,(s) = a,(s)V;(0). Therefore,
V.s)U(s) = V,(0) and

V(D*U)+ DV, )U=0.

Hence, id (t) = — D *U(t)U *(t), from which (4.3) follows.

Any section £ of & has associated with it a continuous
curve ¥, (t) in 7 in such a way that £ (¢) = [o(t ),¢.(¢}]-
When ¢ is parallel with respect to &, we have

£(t) = [oolt):¥,(0)] = [a(e)U(2),¢(0)]
= [o(6),U{t)¥(0)],

U and o, being as in the proposition above. Then,
Y:(t) = U(t)¥,(0) and if ¢, (0)cZ (U), from (4.3) it follows
that

Dy (t)= —id(t)gelr). (4.4)

This equation is the expression in the gauge o of the parallel
character of section £ and the differentiable operator

Vs =D+ +id (t)canbe considered as the covariant deri-
vative operator associated to @ in the gauge o. Notice that
equation (4.4) can be re-written as

Voratelt) = (D™ +id (1) (t) = 0. (4.5)
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This interpretation gives a geometrical meaning to Eq.
(4.4), which is the differential evolution equation of the sys-
tem in the gauge o, the Hamiltonian in that gauge being 4 (¢ ).

It follows from (3.2) that the transformation law for the
Hamiltonian 4 (¢ ) in a differentiable change of gauge is given
by

A{t)=V*H)A@)V()—iV*D V() (4.6)
when ¢ is changed to & with 5{t) = o{¢ )V (¢ ). Thus, although
the evolution is gauge independent, the explicit form of the
Hamiltonian is strongly dependent on the choice of the dif-
ferentiable gauge.

If we choose a gauge o tied to a maximal abelian alge-
bra of bounded observables which contains the observables
of position in the classical configuration space, we give the
description of the evolution corresponding to the Schro-
dinger representation. In such a case o is said to be a Schro-
dinger gauge; Eq. (4.4) in this case is the Schrodinger
equation.

The Heisenberg representation for & corresponds to the
choice of a parallel gauge o, with respect to @ (Heisenberg
gauge). Notice that in the Heisenberg gauge the Hamiltonian
is the null operator. Given a fixed generalized connection @,
in Z, we define the interaction gauge with respect to @, by
the choice of a section g, in & parallel with respect to @,,.
The Hamiltonian in the Schrodinger gauge H| is related to
the Hamiltonian in the interaction gauge H, by

H(t)= V3t )H(t)Vo(t) — iVE(E)D T Volt), (4.7)

where ¥, is the curve in % (5%) defined by

o,{(t) = og(t)V,(t). The second term in the right-hand side of
{4.7) being the Hamiltonian of @, in the Schrodinger gauge
H,, we obtain the usual equality

H(t) = V)W (2 )Volt),

with W=H, — H,.

Let p(r ) be any bounded observable of the system. For
any gauge o there is a curve R (¢) in % (%) such that
[o(t),R (t)] = plt) for any £>0. The curves R and R corre-
sponding to p in two differentiable equivalent sections o, &
are related by the expression

R(t)=V*t)R()V(t), (4.8)
where (¢t ) = oft ).

It is noteworthy that the transformation law for the
Hamiltonian (4.6) does not reduce to that of observables (4.8)
but it contains an additional term displaying the connection
feature of @. This fact also occurs in classical mechanics,
where the Hamiltonians transform in an inhomogeneous
way under time-dependent canonical transformations, while
observables transform homogeneously.

The concept of conservative system must be stated in a
precise way because of the dependence of the Hamiltonian
on the gauge. We will say that a system is conservative when
there exists a Schrodinger gauge o, where the Hamiltonian
H, is time independent.

The description of the evolution of mixed states could
also be stated in this geometrical framework, by making use
of the bundle associated to Z by the left adjoint action of
% () in the set of trace-class positive operators in 57
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V. APPLICATIONS
A. A nonrelativistic particle in a scalar potential

This is a very familiar system in quantum mechanics. In
the standard framework of quantum mechanics in the coor-
dinate representation the states of the system are described
by rays of L %(R>) and time evolution by the rays’ trajectories
of the solutions of Schrédinger equation

(= 34+ e ot = 1 28 5.1)

where 7 is the potential. For simplicity, the mass of the
particle is taken to be the unit.

The meaning of Eq. (5.1) is the following. If 7" is a real
function such that 7(x,t JeL %(R?) + L= (R?) for every >0,
then the Kato—Rellich theorem' implies that the symmetric
operator

H({t)= —1/24 + ¥ (x.t)

is essentially self-adjoint in C $'(R). Thus, H (¢ ) has a unique
self-adjoint extension A4 {¢ } in a domain dense in L %(R?) inde-
pendent of z. By a solution ¥{x,t) of (5.1) we mean that the
curve £ of L2(R?) with £ (¢) = ¥(x,t JeL }(R®) satisfy

iD*+E = AL, (5.2)

Now, assuming that 7 is a continuously differentiable curve
in L R% + L= (R% Kato’s theorem' assures the existence of
an s*-differentiable curve U in % (L }(R%)) satisfying

D*U= —idU, (5.3)

with U (0} = 1. This curve furnishes the complete solution of
the evolution problem of the system; the time evolution of
any initial state £,cL *(R?) att = Ois givenby £ () = U (¢ )&,.
We can consider the system in our geometrical ap-
proach as follows. The bundle of physical states & is
R™* X L *R?) endowed with the constant Hermitian L *(R?)
product. Therefore the corresponding fiber bundles
Z (R, %Z(L*R)))and Z(R™*,% (L *(R?))arebuilt upfrom £
as indicated in Sec. 4. To every bounded observable B (¢) in
L *(R*) we associate at each time ¢ the operator B (¢ ) acting on
&, = {t ] Xx L *(R®), which defines a section p in
#(R™,L*R%). The section p, is the representation in our
framework of the observable B (¢ ). Once a basis {e;} .y in
L ?(R% is fixed, there is a trivialization of 22 induced by the
cross section of & defined by o(t) = (1,{e, } .. ). This cross
section is a gauge tied to the position observables. In fact, for
any bounded observable p that in the standard formulation
of quantum mechanics is time independent, there exists a
bounded operator R in L *(R?) such that [a{r),R ] = p5(t).
Hence any position observable is constant in the trivializa-
tion induced by the section o. The same result holds for ob-
servables depending only on the linear momentum p, the
unique self-adjoint extension of the essentially self-adjoint
operator — ;V defined in C & (R?). This gauge o corresponds
to the Schrddinger representation of the system, but it is not
unique. If we change o to o' = oU,, U, being a fixed unitary
operator, the position and momentum observables remain as
constant sections in the new trivialization of #. For in-
stance, we can change from the Schrédinger coordinate re-
presentation to the Schrodinger momentum representation
by the Fourier transformation, i.e., to take U, as the unitary
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operator of L (R>) defined by

(Uolix) = (27)—”2]@ e~ * ()

for any yeL %(R’). This new gauge is also tied to the position
and momentum observables. We only change the multiplica-
tive representation of position observables to a differential
representation and vice versa for the momentum
observables.

The dynamics of the system is given by the generalized
connection @ in % whose parallel cross sections are of the
form

o, (t) = (6{U(t)U e )in)

for any ¢ 0, where U (t) is the solution of Eq. (5.3) with

U (0) = 1, and U, is an arbitrary element of % (L %(R?). No-
tice that there are a lot of gauges tied to the position observa-
bles which are not differentiable with respect to @. For the
usual change of gauge o to 0’ = ge ~ “, the expression of the
Hamiltonian is changed to 4 + ¢. For a slightly more gen-

eral change & = ge ~'” ™) the new Hamiltonian is obtained
by changing 7" to 7~ + # i.e., the classical potential acting
on the particle is only seen in the Hamiltonian in the gauge
tied to the maximal abelian algebra of position observables in
its spectral representation.

It is worthwhile to note that we started by considering
the standard formulation in the coordinate representation.
This explains why in our framework the position observables
play a relevant role in the gauge o. Had we started with
another representation, then the corresponding gauge would
have been associated to another maximal abelian algebra of
observables.

B. A particle in a gauge field

Although it is not necessary to use the geometrical ap-
proach which we are describing in order to understand the
meaning of the physical systems considered in the case {aj},
we will present another interesting case for which under-
standing this geometrical approach is essential.

Indeed, as we remarked in Sec. 1, the dynamics of a
nonrelativistic quantum particle moving in the space time R*
under the action of a four-dimensional gauge field cannot be
described in the standard framework of quantum mechan-
ics. Moreover, when the space-time is nonflat or its topology
is not trivial the operator corresponding to (1.2) has only a
local sense.”? How shall we define the dynamics in such a
case? We are going to show how this can be done in the
geometrical setting proposed above for quantum dynamics.

Let .# = M XR be a space-time manifold, M being a
connected orientable Riemannian manifold. We shall as-
sume M to be compact for technical reasons, but this is not
essential. Let P (M, G ) be the principal fiber bundle where the
classical gauge field acting on the particle lies. Let " be a
connection of P associated to this gauge field. G is usually
taken to be a connected, compact, simple Lie group. Let
E {M,a,C") be the Hermitian bundle associated to an z-di-
mensional unitary representation « of G in the space C" of
internal degrees of freedom of the particle. We will consider
the evolution of the system from an initial time ¢,, and we
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take 7y = O for simplicity. For each t>0, 7, (M X |t })isa
principal fiber bundle with base M and structural group G,
and 7z (M X {1 })is its associated vector bundle by means
of a. Let &, denote the set of sections ¢ of 7z (M X {t})
such that

Ldu(x)h@ (0. () < o0,

where dy is the Riemannian measure of M and 4 is the pro-
duct in the Hermitian structure of E. It is trivial to show that
&, is a Hilbert space with the inner product defined by

hiEm) = Lh(é (<) mlx))delx)

forany£,ne®,. Let us define & = u &,. For any given con-

>0
nection I in P, the parallel transport with respect to I'yin E

induces a Hilbert isomorphism between &, and &, for any
1>>0. These isomorphisms generate a vector bundle structure
in &, with typical fiber &, and base R*, which does not

depend on the choice of I Therefore, as was shown in Sec.
4, once a basis ¢ = {e,}, .y in & is chosen there exists a

principal bundle Z (R*,% (& ,)) such that & is the associat-
ed vector bundle of 7 by the natural action of % (% ;) on & .

If we choose another element ¥ = {u; ],y in7; '(0), the
isomorphisms between the fibers of & generated by the par-
allel transport with respect to I, define a cross section o, in
2 as follows. Let u,(t ) be the element of &, corresponding
to the parallel transport of u; along the curves ¢, ,:[0,7]
—M X R with e, ,(s) = (x,5). Then, for any 330, o, } is de-
fined by g(t) = u(t) = {u,(t )} in -

On the other hand, each feC (M ) has associated with a
continuous cross section p, of the vector bundle
BR™,A(# ) in such a way that for each teR™*, p (¢ ) is the
self-adjoint operator of &, defined by

(P& )x) = f(x)E (x)
for any £e%,. The family { p/} ) is 2 commutative alge-
bra X, the Schrédinger algebra of the continuous position
observables of the system.

Since the parallel transport preserves linearity in E, the
constant multiplicative self-adjoint operator p,{0) of &, cor-
responds to p,(¢ ) for any #;>0 in the trivialization of 4 in-
duced by the g, with 0,(0) = e, p,(t) = [0t ), pA0)] ;-
Thus, o, is a gauge tied to 2. The cross section o, depends
onu and I',,. Notice that since there is no priviledged I, in &
the trivialization of & is not so canonical as in case (a). Even
if we take Pand I',, to be trivial, there are a lot of connections
in P satisfying that condition and defining different gauges in
P

In order to define the dynamics of the particles under
the action of the gauge field defined by connection I, we
construct a connection I, in Pas follows. Let H%, H, be the
horizontal subspaces with respect to I, and I', respectively,
of the tangent space to P (M X R,G ) at u. Then, we can define
the splittings

HS:M8+T8) Hu:Mu+Tu’

of H°, H, in such a way that

FP*(M(:) = 7TP* (Mu) = Tn'P(ul(M) and
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7pe(TY) = 7po(T,) = T, 1) (R). Let us define I', as the con-
nection whose horizontal subspaces are given by

H! =M°+T,. (5.4)
We construct the cross section o, in & associated to ", with
0,(0) = g,(0) in the same way as above for o, and I',. We are
now going to consider the dynamics in this gauge o,. The
parallel transport with respect to I, along the curves ¢, ,
establishes the isomorphism 7, of P, = 75 '(M X {t })in P,.
Let I, be the connection images in P, through 7, of the
restriction of I" to P,. The family { I, } .z~ describes a differ-
entiable curve in the space of sections of the bundle
A '(Py) X 2, ¢ being the Lie algebra of G.

Let 4, be the elliptic differential operator defined in the
space of differentiable sections in £, in such a way that, given
a local chart (6,¢ ) of M and a cross section 8 :6—P,,
(Atg)ﬁ = g,k (aj - iAj)(ak - iAk)fﬁ - gikF;Z(am - iAm)§B

(5.5)
for any differentiable section & of E,, where g’ is the local
expression in (0,4 ) of the Riemannian metricin 7*7, I" ;; are
the corresponding Chistoffel symbols, §; and (4,£ ), are the
functions of ¢(@ ) in C” corresponding to the sections £ and
A, £ in the trivialization of E, induced by 3, and

afofims 0 2))

w, being the 1-form of connection 7', and , the Lie homo-
morphism of ¢ in M, (C) induced by a: G—GL(n;C).

Now, since — 4, is a symmetric positive operator and
M is compact, it has one self-adjoint extension, which will be
denoted by — 4, too.

Proposition: There exist an s -differentiable curve Uin
(% ,) such that

D*U(t)=(i/2)4,U{t) (5.6)

for any r>0and U (0) = 1.

Proof: This is a consequence of a Kato’s theorem.® Since
M is compact the domain of — 14, is #-independent. Because

— 4, isself-adjoint, 1isin the resolvent set of (i/2)4, for any

>0, and since { I, } g~ is a differential curve in the space of
sections A '(P,} ® ¢, for each given seR * the bounded opera-
tor B (t) = (I — (i/2)A,)(I — (i/2)A,)™ " is strongly continu-
ously differentiable for any ¢>0. Therefore, by Kato’s
theorem, there exists an s -differentiable curve Vin % (%)
satisfying (5.6) with U (0) = L.

We define the dynamics of the particle with mass 1 un-
der the action of I by the generalized connection
O = {02}z us, In P, 0 being the cross section Z with
02(t) = 0,(t)U(t)Z. From this definition it follows that the
cross sections o, are differentiable equivalent to o,, which is
a gauge tied to the commutative algebra 3. This gauge cor-
responds to a temporal gauge formulation of the dynamics of
the particle in the gauge field I', because the Hamiltonian in
this gauge is — (1/2)4,. Fixing uer '(0) the generalized
connection @ depends only on I. In fact, had we considered
another reference connection I in P, the isomorphisms T,
would be the same as 7,, because the parallel transports
along the curves c,, with respect to I"and I” coincide as a
consequence of the fact that in the corresponding splitting
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(5.4) the temporal parts T, and T, doso. Then, I', =T, and
o, = &,. Thus, @ = 6.

Next, we will show that the gauges o, and ¢, are differ-
entiable equivalent. This permits us to display the dynamics
in the gauge o, too.

Proposition: The gauges o, and o, are differentiable
equivalent.

Proof: Let {& [}~ and {7} ]y be the bases of 7, '(¢)
given by gt ) = {£ [} .ex and oy(t) = {7} } .~ - Then, by the
definition of o, and o, & {(x) = 7 &,(x) and

mix) =7,

port map of 7 '(0) in 777 (¢ ) with respect to I'; (i = 0,1)

along the curves ¢, ,:[0,s | >M X R*. Therefore, we have
£ilx)=7c (7o, )" '7ix). (5.7)

Let W,:& ,—& , be the operator defined by
(W.E)x)=(re,,)”'(72, )€ (x)

forevery £€% . Since a is a unitary representation, the paral-

lel transports T?x .and rjx , preserve the Hermitian structure 2
of E. Thus,

7:(x), where 7. (i = 0,1) is the parallel trans-

h (& W) = f dua(xVA(E (X7 )17 y(x)

~ [dutwnte enix = h &)

i.e., W.e%(% ). Furthermore, the curve Wwith W ()= W,
is s*-differentiable in % (% ) and

D W(t)=iW(t)4(),
where 4 (t):€ ,—& , is the self-adjoint operator defined as
follows. Let w, and o be the 1-forms of connections I, and
T, respectively, and X any vector field in P with
Tpe(Xyr)) = /3¢ for any u(x,t)in 7, '(x,r). Then, 4 (¢} is
defined by

U0 = [utx0) ~ieallo —wdlE , | Ite] (53
ox.0 4 E,

for any £e#, with & (x) = [u(x),0),#(x)] . Notice that in
(5.8) we have used the fact that w(X ) = w,(X ), because of the
splitting (5.4). This proves the proposition, because from
(5.7) and (5.8) it follows that

oolt) = o,\(t)W(t)
for any ¢>0.

According to the proposition above, g, is differentiable

with respect to @. The Hamiltonian in this gauge H °(¢) is
obtained from the transformation law (4.6),

HOt)y= W)Y —1/24,)W(t) — iW(t)*D W (1),
(5.9)
1e.,
HOt)= —14)+ A4(r), (5.10)

where A ? is the elliptic differential operator defined by (5.5)
from the connection I"? of P, obtained by parallel transport
with respect to I, of the restriction of I to P,.

Let (6,¢) be any local chart of M and 8:60—P, be any
local cross section of P,. Then, for any differential section £
of E, with £ (x) = [B (x),¥(x)] ¢, and support in 6,
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(H )8 )p(dlx) = — 4438 sl (x) — i
X {(w ~ wo)(XT?xf(x))}I//(x). (5.11)

It is worth remarking that the expression (5.11) defines
aself-adjoint extension of the operator corresponding to (1.2}
in the case of M being compact, when I is trivial and B is a
global section of P parallel with respect to I'. This fact guar-
antees that the evolution we have defined in a slightly ab-
stract way corresponds to the desired dynamics for the sys-
tem.

The gauge g, in & is a temporal gauge iff (@ — w)Xx =0
for any vector field X of P with 7,(X ,) = d/dt. Furthermore,
for any temporal gauges o, & with o(0) = 5{0), we have

H{t)=UQPH@U@t)=H(1),

U being the differentiable curve of % (% ) with
oft) = o(t)U(t), because 7, (7, )~ ' =11 foranyxeM.

(x,¢

In consequence, since there is no natural gauge as in
case (a), this points out how the geometric description we are
proposing for the quantum systems is the natural and intrin-
sic setting for the study of the dynamics of such a system (b).
We could recover the quantum dynamics in a standard set-
ting by fixing a gauge o. But without such a choice of g it is
not possible to formulate the dynamics in the standard set-
ting.

However, one could argue that we have assumed M to
be compact and therefore we have not solved the problem in
the general case, for instance, the dynamics of the particles
under a gauge field defined in the whole space-time R*. We
have restricted ourselves to the compact case in order to have
a global dynamics, i.e., a global solution of (5.6). But, in the
general case, we can also build a self-adjoint extension H °(r)
of the operator (1.2) in the same way. Indeed, if we define 4,
asin (5.6) in the space of sections of E, with support compact,
there exists a Friedrich self-adjoint extension of — 4,. Then
by making use of (5.9) we find the wanted self-adjoint Hamil-
tonian. However, the differential evolution, equation corre-
sponding to the Hamiltonian — 14, is not always integrable.
In consequence, in the noncompact case, the evolution of the
system always cannot be interpreted as a parallel transport.
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Only systems with globally defined evolution have a physical
meaning. Therefore, there is a restriction on the four-dimen-
sional gauge fields which give rise to reasonable quantum
systems. This restriction is gauge independent, because if the
evolution equation is not integrable in one gauge neither is it
integrable in any other gauge. However, most of the four-
dimensional gauge fields on noncompact manifolds give rise
to globally defined evolutions and in this case these evolu-
tions are to be understood as parallel transports. In fact, the
set of such fields is dense in the set of all gauge fields.
Finally, notice that more general dynamical systems,
such as classical Hamiltonian systems or differential dyna-
mical systems, could be studied in a similar geometrical set-
ting, by taking as structural groups the groups of simplecto-
morphisms and the group of diffeomorphisms, respectively.
The differential structure of those groups is stronger than
that of % (5).” However, in such cases the corresponding
descriptions of their evolutions for noncompact manifolds
do not cover all physical situations. For instance, the case of
a dynamical system given by a complete vector field which is
not complete at each time, can not be considered in that way.
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Feynman integral is defined for operator-valued maps which are Fourier transforms of an
operator-valued measure of bounded variation. Such an integral is then used to describe
perturbation of certain unitary groups by certain cocycles.

PACS numbers: 03.65.Db

I. INTRODUCTION

In the 1940s, Feynman proposed a new formalism of
quantum mechanics, in contrast to the well-used canonical
or Hamiltonian formalism. According to this formalism, the
probability amplitudes of mutually exclusive events should
be added (unlike the addition of probabilities themselves in
classical probability theory) and the probability amplitude
associated with each of the possible “paths™ connecting the
space-time points (x,0) to (y,z} is given by

P (y)=expl(i/A)S (v)], (1)

where S (y) is the classical expression for the action function-
al corresponding to the path y and fiis (27) ~ ' times Planck’s
constant. In the simplest of situations when the particle is
moving in one dimension under the influence of a conserva-
tive force, S (¥) = §°[(1/2m)p(s)? — V (y(s))1ds, where m is
the mass of the particle and #{0) = x, (¢ ) = y. Combining
these two basic hypotheses, one arrives at Feynman’s expres-
sion for K (y,£;x) the probability amplitude for the particle to
move from x at time 0 to y at time ¢, called the propagator:

K(pt3)= [ 20Dr. @)
ne)=y

The above integral symbol attempts to “‘sum’ the contribu-
tions for each of the paths y subject to the restrictions

(0} = x and (¢} = y. In the following, we shall set #i = 1 for
simplicity of discussion. For a detailed discussion of applica-
tions of the above ideas to various physical problems, the
reader is referred to Ref. 1.

One of the earlier attempts to understand expression (2)
mathematically is due to Nelson.? One considers a heat
equation

af

> =DAf— iVf, fl0)=f, (3)
t

with D = i/2m, Imm > 0. Then (3) can be solved using the
Wiener integral with the complex parameter D. It can be
shown that the limit of the integral as Imm—0 + exists for
almost all Rem, and one defines the result as the “Feynman
path integral.”” However, the limit cannot be given as an
integral with respect to a signed measure on the space of
Brownian paths.?

Il. FEYNMAN INTEGRALS

Here we shall employ the method of Fresnel integrals
on infinite dimensional Hilbert spaces as done by Ito* and
Albeverio and Hoegh-Krohn.’ First, we note the well known
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result that as an improper Riemann integral on R* one has

(2mi “"”Jexp( — é ||x||2)d"x = 1.

Such integrals are called Fresnel integrals after Fresnel, who
used these study diffraction patterns in light scattering.
Then it is an easy computation to show that for every
Pc.#(R*) (the Schwartz space)

e ) ke = (> f exp( = | 9P ) s,

where ¢ is the Fourier transform of ¢. Note that P (R¥).
Definition: Let 7 be a real separable Hilbert space.

Then f.7#°—C is said to be Fresnel integrable if

fx) = fexp( — i(x, y)) du( ), where uc #(7)=the set of

all bounded complex measures on 5#°. We denote the class of

all Fresnel integrable functions by . (5%} and define “Feyn-

man integral” F as a map: ¥ (%)—C by

Fif= e = 1l )aut) veZim) @)

If fis normed by the variation norm of the corresponding u,
then 7 (7} is an abelian Banach %-algebra (under pointwise
multiplication} and f=u correspondence is 1-1. Then it is
clear that F defined by (4) is a linear bounded functional on
F (7).

For the definition of Feynman path integrals, we now
need to equip the space of paths with Hilbert structure. Let
Z’={y:R*—R locally absolutely continuous
|55 7s)%ds < w0, ¥(0) = 0}. Then & is a reproducing Kernel
Hilbert space with reproducing kernel G such that
(Glo,), ) = 7lo) for all veR* and all ye%,G (0,7} is the
Green’s function for the differential operator — d 2/ds? on
R™ with boundary conditions (dG /d7)(o,» ) = G (0,0) = 0.
Then (dG /d7)o,7) = 6 (0 — 7).

Remark: We have taken one-dimensional space for con-
venience and three-dimensional space can be easily accom-
modated. However, if the configuration space is more gener-
al, say a C * manifold (e.g., for a particle moving under some
constraints), then the above construction fails.

So we have made the space of classical paths into a Hil-
bert space 77”. Now a quantum mechanical particle lives in a
Hilbert space of its own [e.g., L *(R) for a single particle is
one-dimensional without spin]. Let this Hilbert space be de-
noted by H, and let 4 be the self-adjoint generator of a one-
parameter strongly continuous unitary group U, , with its
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spectral family { £, }. Define for 0<s,7

T =U,y = f expl — ilyir) — 115))4 JE(dA ).
5

Next theorem summarizes the properties of J

Theorem 1: (i) For every fixed 7,5,J_; is a $-unitary op-
erator valued function 5. (ii) For a fixed ye#°,J, (¥} is a
propagator, i.e., for 0<s<t<u,

5, t(y)'ll WV = (7/) (6)

(iii) For every f,ge9, ( fJ.(-)g) is Fresnel integrable.
(iv) The Feynman path integral of /. ; is well defined and

F({J,,)=exp[ — (i/2){t —5)4 *]. (7

Proof: (i) and (ii) are obvious from definition (5). For
fixed 7,5, define a map 7, :\R—7 by

ﬂs,r(/{') =4 [G(T") - G(S,')]. (8)

7., maps R into a certain one-dimensional subspace of 5%
and is a Borel map. Setting i, (4 }=( f,E (4 )g) for every
Borel set A CR, we find

ST V) fexp{ — T7) = HS)1A ] gyl )

— [expl ity gy om ',

where we have used the fact that

(7 AN=A (G () = G(s,)]) = A [¥(7) — ¥s)].
Clearly the u, om,, 'e.# (), and its total variation is equal
to that of 4, which is majorized by || f|| ||g||. Thus

(fJ, gy (#) and we can compute its Feynman inte-
gral by the definition (4) to obtain

e e e ) TR

= [fexo = L2716 0 = Gl uld)
= [[exp = La%e sl )csE @110

= <f,exp< - éA el —s|)g>.

Thus by Riesz’ representation theorem, F (/)% (9) and

F(J:',)zexp[——(%)]t——sMZ]. 0

As an example, we consider the translation group in
one-dimension U, = exp( — iPa) with P the momentum
operator in L %(R). Then Rexp{ — i[¥(1) — ¥(s)]1P})

= exp[ — (i/2)|7 — s|P?] = exp( — iH,|7 — s|), which we
identify as the free evolution operator with generator H,,.
Thus, if fe L *(R)is the state of a free particle at time 0, then
its state f, at a later time  is given as

fr =exp(—iHyr)f=F{J.o f)=F(f(- — (7))
or f.{x) = F(f(x — y(r))) for almost all (a.a.) x. This gives a
mathematical meaning to the free evolution operator as a
Feynman path integral.

Let 7 (, B(D)={A:7 —B(B)|4 (y) = fexpl — ily,
¥')|E (dy),variationnormof { £,E (-) g} <M (E)|| /| |g| forall

1460 J. Math. Phys., Vol. 23, No. 8, August 1882

/:8€9}. Asbefore the correspondence, 4=E is one-to-one. If
the measure E depends on values of 7 in the interval [s,7], we
say the corresponding A has support in [s,7]. It does not
follow in general that 7 (5%, % (©)) is an algebra, though it is
clearly a normed linear space.

Lemma 2: Let A,B and AB belong to % (7, % ($)) and
assume that suppA and suppB are disjoint. Then

F(4B)=F(4|F(B).
Proof: (AB)(y) = fexp[ — i(y,¥')]E, % Ep(dy'), and, by

hypothesis, E , % E is of weak-bounded variation. Therefore
by definition (4)

FUB) = [ exp — L17P)E xEqlan
~ [fexo = Ly +71P)EL@niEaiar)
= J- exp( — —;— ||7||2)EA (dy)f CXP( - é ”V”z)EB(d?")
— F(4)F(B),

since (y,7') = O for ye suppE, and '€ suppE ;.0

This result corresponds to what one calls processes with
independent increments in the theory of stochastic
processes.

Ill. PERTURBATION OF A UNITARY GROUP
Next we introduce % ()-values cocycles with respect

to the unitary propagator J, ,, defined in (5). For a fixed
ye#’, let a be a map from R* X R+ —#(H) such that

alsu) = als,t M, altul ', 0<s<i<u < w,

and
als,s) = 1. 9)

It is easy to see that, for any sucha, T, =als,t )}/, , isagaina
propagator, ie., T, , = T,,T,,. For a given % ($)-valued
function M on R, 1f the differential equation

d—‘f(s,r)= il M MM (10)

with initial condition a(s,s) = 1, s<¢, has a solution a, then
that solution will certainly satisfy the relation (9). Such an a
is called a Z (9)-valued cocycle or just a cocycle with respect
to J, . Under various conditions on M, e.g., if M is norm-
uniformly continuous, then (10) has a unique (unitary) solu-
tion, and this follows by essentially mimicking the Cauchy-
Picard method for ordinary differential equation. The asso-
ciated series is called the Dyson series in the physics litera-
ture, and for further reference on this point, we refer to Ref.
6. We note that any solution a of (10) depends on the path y
via J.

The next set of theorems show how cocycles can be used
to generate new evolutions.

Theorem 3: Let M (r)=M in (10) be such that either (i)
the pair {M,A4 | form an irreducible imprimitivity system, or
(il) MeZ ($). Then (10) has a unique solution in % (9).

Remark: The hypothesis (i) of the above theorem means
M is a selfadjoint operator with its spectral measure E * with
the property:
exp( — ida)E ™ (A Jexplida) = EM(A + a) VacR. Itis a
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result of Mackey’ that such an imprimitivity pair can be
represented as a Schrodinger pair, i.e., § is isometrically iso-
morphic to L *(X') such that (Mf)(x) = M (x) f(x) and
[exp( — ida)f }(x) =f(x — a) for a.a. xeX.

Proof: (i) In view of the preceding remark, Eq. (10} takes
the following form in L %(X):

dals,t)
dt

This can be easily solved to give
afs,t) = exp[ — ifiM (- — ¥(7) + Vs))d7], as a bounded
multiplication operator in L *(X). This is the so-called Feyn-
man-Kac cocycle. The case (ii) has already been discussed
and in this case the solution is given by the Dyson series.[]

Theorem 4: Assume the hypotheses of Theorem 3. As-
sume furthermore that either (i) the function M in the remark
is the Fourier transform of a bounded measure v on X, or (ii)
Me % (D), the class of Hilbert Schmidt operators in $. Then

(a) T, ,=als,t W, 5 (X, % (D)),
b) V. =FI(T,,)
=exp[ — i} 4>+ M)z —s)], O<s<t. (1)
Proof: (i) Considering the expansion of
al(t,s) = exp[ — ifiM(Q — y(7) + yis))dr] [Q is the self-ad-
joint operator of multiplication by x in L %(X )] and taking the
first nontrivial term in 7 ,, we have

s

f M(Q — i) + Yis)drT,,

= —ials,t M (-—¥(s}) and a(ssj=1

=f drfdv(ﬂ)eXp{ —i[@—y(n+vis))B}

x j expl — i(y,y))Eomy: \(dy).

The last expression can be written as a Fourier transform of
the measure drdv(8 Jexp(iQB )Eon,; '(dy')on [s,t ]| X X X .
This measure is easily seen to be of weak bounded variation.
Similarly one can consider other terms of the series and con-
vince oneself that als,t J, € 5 (¥, % (D).

(ii) In this case Dyson series gives the solution of

ast)=I+ $ (—i)”f d;IJ'dzz.--fHdtn

n=1

XM (s,t,)M (s,t,)--M (s,t,,),
where we have written M (s, }=J, MJ ;' and we note that

the series converges in norm. Itis clear that als,t WV, willbein

F\H,B QNI E (A |ME (A,)ME (4;)-ME (4,)

=TI(4,XA4,X--X4,) for some spectral measure I" on R".
Since M is Hilbert-Schmidt, it admits the canonical

decomposition
M= 3 A,k with S 4,17 < .
i=1

Let $* be the antilinear dual of £ so that for f*€H* and ge$
we have f*(g) = ( f,g). Then it is easy to see that Z,($) is in
1-1 correspondence with $* @ §. In fact,

M = 24e* ® h,eH* ® Hsince {ef ® h,} is an orthonormal
(0.n.)basisin $* ® § and 2|4, |> < 0. Define a spectral mea-
sure I on R ® R taking values in $* ® § by

4, x4,)=E(4,)*®@E(4,). Then

1461 J. Math. Phys., Vol. 23, No. 8, August 1982

(F(AnxAz)f*83M>.\3's®
=SAAE ) f)*9E(d,)gef @ hy)

=S4, {e,E(4,)f) (E(4,)gh;)
= (&E(4)ME(4,) f).

Thus set (4, X4, XX4,)=E4,*eE(4, )
®--8E(4,)*®E(4,)if nis even and
=E4,)0FE(d,_|)*®-0E(A,)*®P(4,),ifnodd. Ifnis
even, then

(F4, x4, X XA, )f*eM*eM*g...ogMeMg )
= YA, A, A, ,(ejl,E(A,,)f)
X{e ,E(4, ) (e ,E4,_,)h,)
X {e;, EAJh ) (&E@A )R, )
=(gE(A)E(A,M--ME(A,)f).

A similar calculation is valid for n odd. Clearly such a mea-
sure I on R, is a spectral measure, taking values in a large
Hilbert space H* ® $ @ H* ® ---. Therefore, the measure

H

E(ME()--ME()

n times
1s a measure of weak-bounded variation in , and we have
the result (a).

The Feynman integral of T, exists by (a) and defines a
bounded operator in Z(9). From the cocycle property (9) of
aitfollows that T, . isa propagator,ie., T,, = T,,T,, when
0<s<t<u < . Since « is a solution of (10), it is obvious by
the remarks following Eq. (10) that a(s,z ) depends on the
values of y only in the interval [s,z ]. Thus the support of 7, ,
and T, are disjoint, and hence, by Lemma 2, we have

Vs,uEF(Ts,u) = F(Ts,t Tl,u) = F(Ts,r)F(Tt,u) = V:,t Vt,u’

i.e., Vis a propagator.

Next we compute the strong derivatives of V,, w.r.t. ¢.
Let feD (4 ?). Then it follows from the propagation property
of ¥ that

(/BWV o = Vo) = Vo, (1/R) VY, uf = f)
= Vs.zF [(l/h )(a(tat + h ) - I)Jt,t+hf]
+ Vo (1/h){exp[( — ih /2)4%) =1} f. (12)
In the above, we have observed that Ie.# (%°, 4 ($)) and
F(I') = I, and also used (7). Clearly the second term in (12)
converges strongly to — (¢/2)V, 4 *f as h—0.

In either case (i) or case (ii), we expand a(t,t + ) — Iby
the appropriate Dyson series and conclude that the first term
converges to — iV, Mf strongly as 4—0, leading to the re-
sult (b).O

To conclude, we give the example of a single quantum
mechanical particle without spin moving in one-dimensional
space under the influence of a static potential V (x). Its evolu-
tion is given by the Schrodinger equation: f, = exp( — iHt) f,
where H = P?/2 + ¥, which is a self-adjoint operator in
L *(R) under a wide range of assumptions on ¥ (x). Since the
pair { Q,P ] forms an irreducible imprimitivity system in
L }(R), we can apply Theorems 3 and 4, if, furthermore, V(x)
satisfies V' (x) = § exp( — ixB )dv(B ) for some v of bounded
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variation. Thus we obtain
fi=exp(—iHt)f

= F(exp[ - ifotV(Q - y(r))dr]exp[ — iyt)P] f)

= F(exp[ - ij: V(@ — y(f))dr]f(- -t ))),

which is the Feynman-Ito formula.®

Remark: From the proof of Theorem 4 it is clear that its
extension to any larger class of potentials will depend on how
smooth is the Feynman path integral map F.
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Solutions of type D possessing a group with null orbits as contractions of the

seven-parameter solution
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Centro de Investigacion y Estudios Avanzados del 1. P.N., Apartado Postal 14-740, México 14, D. F., México
{Received 7 December 1981; accepted for publication 26 March 1982)

It is shown that several type D solutions with null group orbits of local isometries are limiting

contractions of the seven-parameter solution.

PACS numbers: 04.20.Jb

The aim of this work is, first, to construct explicitly
some limiting contractions of the seven-parameter solution
of Plebanski and Demiafiski’ to the family of all null orbit
divergenceless solutions, and second, to provide a specific
answer to a question posed by Debever and McLenaghan in
their recent paper’ concerned with type D fields—is the Le-
roy null orbit solution® just a contraction of the seven-pa-
rameter solution?

The families of solutions studied are those in which the
electromagnetic field, if present, has real eigenvectors
aligned along the double Debever—Penrose (D-P) directions.

The starting point of the present paper is an alternative
representation of the P-D solution which can be obtained by
subjecting Eq. (3.30) of Ref. 1 to the transformation

2
1
d7'——>d7'+q—dq, do—do — —dq,
Q Q0

which brings the seven-parameter metric to the form

1 [PP+¢ Z
ds* = { 2 dr + 2d0)2
1—pgf | 2 g e
— 2dg(dr — p*do) — —2—Q—2 (dr —p2d0)2] , (1)
PrF+q
where
P =(—A—g+7) +2np—ep

+2mp* + (- — e —y)p*,
Q =(—+e+7)—2mg+eq°

—2g’ + (P +& —vg*. (2)
The conformal curvature invariant,

5= ng‘ =C*p CP = (CYUP—4CUC? +iCcoC?
in the null tetrad formalism and signature ( + + + —),
and the 2-form of the electromagnetic field which character-

ize this solution, are

524(%‘:1%)[ (m + in) + (& +g);+p;] (3)
and

w=_d{e+g(dr—zpqdo)}, @)
q+i
respectively.

By scaling the coordinates according to

p—€"'p, g€ g, T—er, o—€'o,

*'On leave of absence from the University of Warsaw, Warsaw, Poland.
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and simultaneously adjusting the constants

e+ ig-»e_z(e +ig), m—e’m, es—€ 2,

n—€’n, y—e *y+id, A4,

and then taking in (1) the limit e— 0, one arrives at

ds* 2 ; i dp* + e (dr + ¢°do)?
— 2dg(dr — pdo) ~ —2— (dr — pdo)?, (5)
with d
P =y—g+2p—ep —p*,

Q=v+e —2mg+eq” — Hg,

2
6= 4. 6[—(m+in)+(e2+g2)—l. ] ,
(g + ip) q—ip
d{;:g dT—zpqda)]. (6)

This solution, studied exhaustively in Ref. 4, is an alternative
representation of the Carter solution.’

A limiting contraction of the above solution leads in
turn to the “anti-NUT” branch of type D solutions (see Ref.
4, Secs. 10 and 11), which was shown in Ref. 6 (Sec. 5) to be
equivalent to all divergenceless type D solutions with A and
with the electromagnetic field aligned along the double D-P
vectors. In terms of the present representation of the solution
via (5) and (6), the contraction consists in replacing

P—P, gGot€q, o€ o, ToT—gre 0 ,(7)
and adjusting the parameters according to

e+ ig—e+ig, non, A—i,

e=8o+24q5, m= —n€+Eodo+ ¥4

Yo= — 2640€ + o€ — € + {ogs + A5,
(g0, 0,70sG o are arbitrary constants independent on €}, and
then taking é—0. One obtains

24 g2
dS2=p qO dp2+ - - (d‘l'+2q0qd0')2
7 p +4q
+2(p* + g5)dgdo — (p* + q3).F do? (8)
where
P = —(&+&)+ Loas + Age

+2np — (&0 + 2A¢3) p* — W p*,
I =&+ 2m09 + Cog? - (9)

However, in the present version of the anti-NUT family, one
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is permitted in particular to set £, = 1, = {, = O, obtaining
thus a five-parameter solution, the family of all divergence-
less null orbit type D solutions,” given explicitly by

dSZ=p2+q(2) dp?
7
+ ——— (d7 + 29,qdo)’ + 2( p* + g5)dgdo,
P+ 49
P =—(@+g)+2mp—A4p*+2¢; p* —q3), (10)

with the nonvanishing curvature quantities and the electro-
magnetic field given by

2 2
o= 2 lnsqug - <L,
{p+igy) P — g,
R=—44,
Ch= - CF+8
(7*+¢5)
, 1 . .
o= —(e+1g)d[ - (zdr——(p—zqo)qdo)], (11)
P t+iq

when referred to the null tetrad

e! 1 174 172
r (G e

0

15} — 172
) o)
P+ 49

Ee=(p+qldg, & =do. (12)

In order to bring the above solution into the canonical form
of the nondiverging and nontwisting type D solutions, for-
mulas (3.34)-(3.40) of Ref. 6, one replaces

go—>l, o—u, gq—v, ™0 —luv, (13)
thus arriving at
d52=p2+]2dpz+ 7
(@ p2+12
X [do + Hvdu — udv)]® + 2{ p* + [ Hdudv , (14)
with
P = —(€+g)+2np—AQp*+20%p* 1Y),
__ 4 {n +i4/113—~(e2+g2)—1——]2
(p-+il)° E p—ill’
0= —(e+igd {é(udv — vdu)
4+ —t (o + I vdu — udv))} . (15)
p+il

Therefore, the general non-null orbit divergenceless type D
solutions reduce simply to the solutions with null orbit, pro-
vided that the parameter € in (3.34)—(3.40) of Ref. 6 assumes
value zero.

This null orbit solution contains, among others, the
vacuum solutions obtained by Bampi and Cianci® and Mel-
vin’s® magnetic universe (/ = A4 = 0).

Within the whole class of divergenceless type D solu-
tions it remains still to obtain the null orbit limit of the Ber-
totti-Robinson'®'! branch which turns out to be the only
exceptional null orbit type D solution.'*'? This can be easily
done starting from (14)—(15) with

1464 J. Math. Phys., Vol. 23, No. 8, August 1982

=0, n=+g U+, A=+g°,
p—l+ep,
In the limit €0 one obtains

og—e o (16)

ds? — ? dp® + Pdo® + 2dudy ,

Z =1~ +g)p". (17)
This metric always can be brought to the form
ds* = 2¢ ~*dEdE + 2dudy , (18)

with

$=1+(E>+BYE, A=E+B*, CV=_u,
w=YE +iB)d {¢ ~(EdE — EAE) + udv — vdu} . (19)

Alternatively, one arrives at this special B-R solution by

subjecting Eqgs. (10.22}~(10.30) of Ref. 4 to the
transformation

dr—dr + ¥~ 'dgq,
and by setting
2 2
§():770:0, }‘=—e§0‘1202:
(g6 +p5)
Having derived some null orbit type D solutions via
contractions of the seven-parameter family, we can now
state that as far as the second objective of this work is con-
cerned, i.e., deriving the null orbit solution of Leroy, formu-
las (2.26) in Ref. 2 and (3.36) with b = 0 in Ref. 3, modulo
minor redefinitions, reduce just to (5) and (6) with the parti-
cular values of constants

y= -2, (20)

which leads to the metric

EX4+ H?.

m=A=€=0,

2 2
ds? _P ‘f‘q dp2

(J/
+ —29—3 (dr + g°do) — 2dgldT — p*do),
P +4q
{21)
where
P = —(e*+g)+2np.

Notice also that applying then, to the so-constructed solu-
tion, the transformation (7), and taking the limit e—0, one
obtains a null orbit solution, being a special case of {15), with
vanishing cosmological constant.

A formal nuil orbit metric can be derived from (1) by
specializing the parameters, in the case of 4 > 0, to particular
values

m=n=€=0, y=—J—g), A/3=c+g,

one arrives at a metric with

0=0, Z=—K(1+p. (22)
Nevertheless, working initially with signature
(+ -+ + —), the so-constructed metric, with P <0, has a

wrong signature. In this respect, the metric derived by Deb-
ever and Kamran,'* formulas (7.15)-{7.17), starting from
their version of the D ’s as described in Kinnersley coordi-
nates with signature ( + — — ~ )(there the Leroy solution
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was also constructed), is not self-consistent; this fact be-
comes evident because of the impossibility of equality (7.17)
of Ref. 14.

We conclude this paper conjecturing that very likely a//
null orbit solutions of type D with electromagnetic field
aligned along the D-P vectors are derivable by limiting tran-
sitions and real cuts from the (complexified) seven-param-
eter solution.
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Explicit solutions of the conformal scalar equations in arbitrary dimensions
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Solutions of the equations of motion derived from the scalar conformal invariant Lagrangian in
arbitrary dimensions are found. The solutions are invariant under the maximal compact subgroup
of the corresponding conformal group. They have finite energy and action. In the case N = 2, we
also find noticeable topological properties of the solutions.

PACS numbers: 04.20.Jb, 04.20.Me

INTRODUCTION

The number of new—and very often surprising—fea-
tures appearing in the study of nonlinear equations in math-
ematical physics has increased in the last few years. The ap-
pearance of soliton solutions, topological quantum numbers,
and so forth, is not only interesting from the mathematical
point of view but also leads us to contemplate possible alter-
native explanations of several physical effects which are still
not too well understood. The most relevant of such an effect
is, no doubt, the problem of confinement in nonabelian
gauge theories. It is also possible that those properties be-
longing specifically to nonlinear dynamics might well induce
a drastic change in our knowledge of the physical evolution
and other basic concepts such as space-time and Lorentz
invariance. The success of conformal invariance, as a math-
ematical tool for studying specific properties of some of
those nonlinear equations, suggests that something more
fundamental than simply group-theoretical analysis may be
hidden behind the door. This paper is an attempt in this
direction. From a considerably more modest point of view
we show here several surprising properties of the conformal
scalar equation in an arbitrary dimension. The goal is
achieved by exploiting conformal invariance and construct-
ing solutions with interesting properties by means of the sys-
tematic use of the hypertoroidal formalism, a very natural
framework whenever we deal with conformal invariance.
The paper is organized as follows. Section 1 is devoted to the
detailed description of the above mentioned formalism in a
N-dimensional “Minkowski space”: (V — 1)-spatial dimen-
sions and one time dimension. Since the cases N = 1,2 are
rather pathological we confine ourselves to the case N> 2 in
Secs. 2 and 3, where we give explicit solutions with finite
energy and action. Interesting properties which concern the
energy momentum tensor are described in Sec. 3. Section 4
deals with the NV = 1 case. Section 5 is entirely devoted to the
N = 2 case (the Liouville equation) and new solutions of this
equation are presented with several topological properties
arising precisely from the use of the toroidal formalism. Fin-
ally, Sec. 6 is one of conclusions. There, we show that all our
solutions are stable under the new “time-parameter” 8 and
we speculate about the possibility of quantization using this
6-parameter. Also, the quantum field theory based on the 6-
evolution is shown to be a rather suitable approach to quanti-
zation of conformally invariant field theories.
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1. THE SPACE AND THE EQUATIONS OF MOTION

We consider first a generalized Minkowski space in N
dimensions. This means a pseudo-Euclidean metric flat
space of signature (¥ — 1,1). The (N — 1) spatial variables
will be labeled by x; (i:1,...,N — 1). The time dimension will
be called ¢ throughout the paper. The flat metric g,,,
(wv:1,2,.., N—1,¢)is

gn=8n=-=8v_in-1= —8u=1 (1)

The conformal group corresponding to this generalized
Minkowski space is SO(NV,2)'", and it acts linearly on the
pseudo-Euclidean space of signature (1,2,...,§ — 1,N + 1;
t,N + 2). The flat metric in this space is

811 =8n=""=8v_1n_1 =8n+in+1 = + 1 (22)

gllng+2,N+2 = — L. (Zb)

The conformal invariant Lagrangian for a scalar field in

the generalized Minkowski space requires that all terms
have to have overall scale dimensionality — . Since the

field has scale dimension / = — (N — 2)/2, the only allowed
terms are'
N-=-2 _
f=%(9#¢)(3“¢)—8—57v——¢2”’” 2 (3)

and g is, of course, a dimensionless coupling constant. The
equations of motion are readily obtained from {3}

D¢+g¢N+2/N—2=O’ (4)
where O is the generalized d’Alambertian
D=32+ +a%+'“+‘912v—1_af- (5)

We are dealing with Eq. (4) for arbitrary V. In the phys-
ical case, N = 4 and we recover the celebrated g¢ ¢ Lagran-
gian. However, since cases N = 1,2 are slightly pathological
they will be discussed separately at the end of the paper.
Thus, we confine ourselves to the general case for N> 2.

Although the Lagrangian (3) is invariant under the full
conformal group SO(¥,2), we look for solutions invariant
under the maximal compact subgroup of SO(N,2), namely
O(N )X 0O(2). In conformal coordinates £, this compact sub-
group leaves the (¥ + 2)-light-cone invariant

5% +§§ +o+En _§f+§12v+2 _512v+2 =0,(6)

which is a general property of the conformal group. Besides,
since we are confined to the O{N ) X Of{2) subgroup, the £’s
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also have to satisfy:
El 44+ +EN  +HEV =] (7a)
E1+€8 =1 (7b)

The last condition defines the submanifold S¥ ~ xS},
a generalized hypertorus. In fact, it has been proved by the
author? that the generalized Minkowski space is homeomor-
phic to this manifold in the following way:

M= (SV XS /Z,,

where Z is an abelian group which depends on the topology
of the S ¥~ ! sphere. Since this is a compact manifold, it can
be described by N angles and it represents the natural com-
pactification of .# . In order to parametrize the
(S¥~'xS")/Z, manifold we take the (N — 2) spatial angles
of A y:{0,,0,,....8~ _ ;). Next, we introduce light cone
coordinates

t, =t+r, (8a)
r=[x}+x+..+xx_]" (8b)
and define the angles
# = arctan L*—L, 0, = arctan Ll 9)
R +t+t*
where
. [
sin @ = + ,
(1»+t2+ )1/2(1 + t2_ )1/2
(10a)
. t, —1
sin §, = + = :
0 (1+t2+)1/2(1+t2_ )1/2
1—1t,¢
cos § = = ,
(1 + t2+ )1/2(1 +t2— )1/2
{(10b)
cos G, = 141,10

(L% )2+ e2 )7

The connection between the £’s and the generalized
Minkowski coordinates is

£ = 2, s (11,8 = 1),
! (1—+—t2+)”2(1+t2_)’/2’
(11a)
En., = 1+2,2 ,
(1 + t2+ )1/2(1 + IZ— )1/2
f -
(L2 )21 462 )
(11b)

£ _ 11—zt .
N+2 ™ (1422 V1 422 )12
It is easy to check that (11a) and (11b) fulfill the condi-
tion (6) and (7a) and (7b). Then 6 parametrizes S ' and
(60,6,,6,,...,0, _,) parametrize S~ ~ .
The generalized Minkowski line element is

ds = [dP* 4 Pd0? — dr?), (12)

where d2 ? contains the angular dependence in the (V — 2)
spatial angles (6,,8,,...,8y _, ). In the new coordinates, (12)
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becomes
ds* =m [d62 + sin® 0,27 — d°].
0.
(13)

The only requirement needed in order to obtain identifi-
cation between (12) and (13) is

(cos @ + cos 6,) >0, (14)

which represents analytically the condition imposed by the
abelian quotient (SV~'xS")/Z,.
It is useful to write the generalized d’ Alambertian (5) in

t . coordinates. We obtain

+
32
oo
+2 N——Z[ Jg___29 ]—+—angularpart. (15)
t,—t_lat, ar_

The solutions that will be investigated are isotropic.
Thus, we can neglect the last term in (15).

2. THE SOLUTIONS

Consider the field configuration
A
¢ =
(T2 (1422 )
Looking at the expressions {6}, (7}, (11a) and {11b}, we

can easily see that ¢, is O(V )X O(2) invariant. The d’Alam-
bertian (15) acting on (16) yields the relationship:

, A,a constants. (16)

D¢c: _ (/:V+2/N—2 (17)
if

2Ind = (N —2)ln (N —2), (18a)

a=(N—2)/4 (18b)
Then

¢r =g~ (N —2)/4 (N — 2)(N— 2 “9)

(1 _+_ f2+ )(N—Z)/4(l + {2~ )IN— 2)/4
is an O(NV ) x O(2) solution of (4).

The corresponding O(N ) solutions can be found if we
multiply ¢, by a function of the angle 8 [see Eq. (9)]. The
d’Alambertian acting on the product ¢_/(6) gives the fol-
lowing result:

O{6.101) = — o2 [ r0) 4 710)]. 20

wheref"'(6) = d ’f(0)/d#>. Comparing (20) with (4) see that
¢.f(0)is a O(N) solution if (6} verifies the nonlinear ordi-
nary differential equation

g/ O HS6) ey =0, (21)

The only cases in which (¥ + 2)/{N — 2) is an integer
are N = 3,4,6. In those cases we find solutions of (21) in
terms of elliptical and hyperelliptical functions. The general
casewhen (N + 2)/(N — 2)is an arbitrary rational number is
at present under investigation.

José M. Cervero 1467



3. ENERGY MOMENTUM TENSOR

We generalize the improved energy momentum tensor
of Callan, Coleman, and Jackiw® to arbitrary dimension in
this generalized Minkowski space. We find

=1{0.4)0.8)—g.-ZL [3 3, —g.. 018
(22)
where M is:
M =4N — 1)/(N —2). (23)
The tensor ¢,,, (22) can be rewritten as
. N
¢yv - 2(N— 1) a,u¢av¢
N-2
- —4¢d,d
( _ 1) ¢ 1 v¢
gyv N 5 8(—_—1—)¢ B
(24)

exhibiting its obvious property of being traceless.
Using (19), the energy momentum tensor for ¢,
becomes

N —2) 1
d,, = f(—[a) 0, —— Va)"a)a] 25
v = @ v 1) L & (25)
and o, is defined as
1 L} L=
w#:—[ ”2 + ”2 ] (26)
2 [ 1+1¢7, +¢7

and

Lr (%)
r
The vector field w,, verifies
0D,», =0, (27a)
D,v, =0, (27b)

where the covariant derivative 5# is defined with respect to
the conformally flat Weyl invariant metric

Eyv = ¢)2(g;nf' (28)

The first condition (27a) says that w,, is a geodesic field.
If x, = x,(s) is a geodesic corresponding to the metric (29)
then, @, = dx, (s)/ds. The condition (27b) shows that in ad-
dition ,, represents a vector field of parallel vectors.

From the expression (25) we can find the energy of the
solution ¢_.. We have

E— J vé,, (29)

where d ¥ is the spatial volume element in N dimensions. The
action of the solution is

_ f AVt L (6., (30)

where .2 (¢, ) is the Lagrangian (3) particularized to the solu-
tion ¢, . After some lengthy calculations we can find expres-
sions for the energy and action as functions of N. They are
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— (N —2)¥ i - Mr(%) FN+1, (3la)

—(N—2¥g¥=v2 (%) F(N+1), (31b)

we see that both quantities are indeed finite for an arbitrary
(but not infinite) number of dimensions N.

Let us calculate now, the energy-momentum tensor for
the O(NV )-symmetricsolutions ¢ =¢_f (6 ), where f (8 ) verifies
(21). It turns out that the energy momentum tensor is inde-
pendent of the explicit form of /(6 ). This curious fact was first
observed by the author,** in the N = 4 case. However, it also
holds for general N > 2. To see this, we insert ¢ =¢_f(6) in
(24). The energy-momentum tensor for ¢_f (6 ) is thus ob-
tained. After some algebra, we obtain

By = wH«p )
where E stands for the quantity
— 2 1.
o= )+ )
2 "
—N(T-z—)f(@)f (6). (33)

Itis easy to see that E, is a constant. Integrating (21), we
get
2
(N —2)

f(e )ZN/N -2 EO-
(34)

Multiplying (21) by [(¥ — 2)/2N (6 ) and subtracting from
(34), we obtain (33). The constant E, can be identified as the
mechanical energy of a particle of mass 4/(N — 2)* moving in
a potential

f70)+ f2(9)—

1 N—2 onsw
Vif) = —F2 /N =2
) 2f N S
The interesting fact is that even if we don’t know the
explicit form of /(8 ), the energy of the solution can be calcu-

lated explicitly. From (32) we see that
E°™) = NE,E,

where E is given by (31a). Therefore, we have
EOW) = BN — ) 7V~ 12 r(—N: 1 )/r (¥), (35)

4. THE N =1 CASE

This case is not even a field theory but simply one-di-
mensional particle mechanics. The integration of the equa-
tions of motion is, however, interesting since it can be per-
formed in our formalism, and we shall present it here for the
sake of completeness. In addition, the quantum theory of
this system has been analyzed by De Alfaro, Fubini, and
Furlan,® and their results are very interesting, too.

The Lagrangian is
y=1 ("¢) ~Le, 136)
dt 2 4

where ¢ represents the only independent dimension of the
system. The equation of motion is
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¢ _ 8 (37)

d*> ¢°

The corresponding conformal group is SO(2,1) and the
maximal compact subgroup is, of course, SO(2). In light cone
coordinates

E1+£63—-63=0,
with the restriction &£ 2 + £3 = 1,£3 = 1, we obtain

. 2t
=sinf=———, 38a
£, S (38a)
1—1¢?
=cos 8 = . 38b
§2 1+t2 ( )

In those coordinates, the general solution can be writ-

ten as
¢~g”“[ 204+ 2(C? — 1)”2sin6?]‘/z
1+ cos@ ’

where C is an integration constant. The action is divergent
for any value of C. It is, however, interesting to consider the
cases C = 0 and C = 1. In the first case we obtain a complex
solution

(39)

2isin 8 1'?
=g =="" [ | 40
do=28 [1+cos6 (40)

which has a logarithmically divergent action and zero ener-
gy. In the case C = 1 we obtain

¢ =g"“[—~2—]1/2 (41)
! 1+ cosé ’

with action that diverges as tan (7/2), and energy E = 1 g'/?,
a constant proportional to the square root of the dimension-
less coupling.

The zero energy case is reminiscent of the instanton
configuration in Euclidean space® and the finite energy case
to the meron configuration® in Yang-Mills fields and ¢ *-
theory. If we consider the quantum evolution in the “com-
pact-time” &, we find a rich discrete spectrum which has
been analyzed exhaustively in Ref. 6. Whether or not quanti-
zation in f-time might have a more profound physical sig-
nificance will be discussed in Sec. 6.

5. THE N =2 CASE

Asit stands, the Lagrangian (3) is not defined for N = 2.
This is due to the well-known fact that the conformal scalar
equation for N = 2 is the Liouville equation, as can be seen
from the differential geometry of conformal spaces.” The La-
grangian is then

L =1(0.4)0"¢) — ge*, (42)
where a:(1,0):(x,? ). The equations of motion are
(6: — F)p = ge’. (43)

The general solution of (43) was found by Liouville
more than a hundred years ago.® This equation has also been
recently studied by several authors.”'2 In our formalism,
however, some particular solutions can be obtained which
exhibit interesting behavior from the topological point of
view. This is due to the particular kind of boundary condi-
tions introduced by the toroidal formalism. We can still use
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the conventions of Sec. 1. The only change that we shall
introduce is the definition of light-cone variables. From now
on, we define

t, =t+x,

t_ =t—x

(44a)
(44b)

Since — o <t< + o0 and — o <X < w0, the new var-
iables ¢, and ¢_ range now within a different open subset of
the real line. However, this minor change only affects the
range of integration and we will take it into account only in
our calculations.

Apart from this technical point, the definiton (9) and
Eqgs. (10a) and (10b) for the angles & and 6, will be the same.
The conformal group is now SO(2,2) and the compact mani-
fold (S ' ® S !)/Z, is the torus. The maximal compact sub-
group is, indeed, O(2) X O(2), which might lead us to the erro-
neous conclusion that & and 6, play a dual role. This is, in
fact, not the case as we shall see below. The angle 6 is a real
evolution variable as opposed to the “spatial” angle &,. The
situation would be different for a Euclidean metric in (43).
We will go back to this point later on.

No O(2) X O(2) symmetric solution exists. This can be
easily seen from the form of Eq. (43). Let us consider O (2);
invariant solutions {where O (2), is the spatial subgroup of
0(2) < 0(2)) of the following form:

é, = In[(B /g)(cos 8 + cos B,)*sec*{(B /2)"/}6 — 6)}],

(45a)
#, = In[(B /g)(cos & + cos G,)*csec*{(B /2)"/}(6 — 6)}],

(45b)
¢, =In[(B /g)(cos 6 + cos B;)*cosech>{(B /2)'/%(6 — 6)}],

(45c¢)

where B is a positive constant and 8 a trivial constant shift of
the variable 8. The configurations (45a)~(45c) are solutions of
(43) for positive g. If we consider the case of negative g, then
the only solution would be

¢, =In[(B/|g|)(cos 6 + cos B,)sech?{(B /2)'/%(60 — 0)}].
(45d)

We have to address ourselves to the task of constructing
an energy-momentum tensor for the Lagrangian (42) satisfy-
ing the requirements of conformal invariance. Tracelessness
will be introduced through the equation of motion. The only
possible choice for this “improved” energy momentum ten-
sor is

9&5 = aa ¢aﬁ¢ - g#vf - 2607’6358786¢’ (46)

where €,5:(€5; = — €, =1 and €y, = €,, = 0). We can cal-
culate the energy of the configuration (45a)}-(45d) through
the 8,, component of (46). The answer is

E = 47(1 — B /2), for the configurations (45a) and (45b),
(47a)

E = 477(1 + B /2), for the configurations (45c) and (45d).
(47Y)
Therefore, configurations (45a) and (45b) have zero en-
ergy for the case B = 2. This is again reminiscent of the pro-

perties of instantons. That simple intuition is indeed con-
firmed by the following observation. For the configurations
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(45a) and (45d) which are solutions of the equations of mo-
tion, we can replace in the Lagrangian (42) the potential

— ge® by the left-hand side of (43). But this is a total diver-
gence which should not have any effect in the Lagrangian.

However, upon integration of (3> — d%)¢ over x and ¢ this
gives 2 nonvanishing contribution. For instance, for confi-

guration {45a) we obtain

B 172
—g J dx dt ¢* = 47(B /2)”2tan{(?) 7r], (48a)
and for configurations ¢,, ¢,, and ¢, we also have

B 172
g f dx dt e*: = 47(B /2)‘/Zcot‘ (;) w], (48b)
B 172
g f dx dt ¢* = 47(B /2)" /zcoth[(y) 7], (48¢)

172
g f dx dt e* = 4n(B /2)”Ztanh{(i§-) 7}. (484)

Those continuous quantities represent a sort of topo-
logical indices for the Liouville equation. Notice that (48a)
and (48b) blow up for B =2 and B = |, respectively. How-
ever, (48¢c) and (48d) are everywhere continuous and regular
for any value of B.

The action is also finite (although sometimes complex)
for those field configurations. The regular piece of the action
for ¢, is

A =471 —(B/2)"*)?

with similar expression for the others. Again4 =0if B =2,
which suggests a minimum for the action as in the instanton
case.

The physical applications of our solutions are clear. Re-
cently, Polyakov'® has suggested that the two-dimensional
Liouville system may be crucial for the quantization of the
four-dimensional string in arbitrary dimension. Obviously
the solutions that we present (when continued to Euclidean
space) are perfect candidates for semiclassical calculation of
the Euclidean Green function since they represent, in fact,
minima of the action. The functional integral can be expand-
ed around those minima through the conventional saddle-
point approximation. Work in this direction is now in
progress.

Concerning the topological significance of {45a)—(45d),
we would like to point out that similar continuous topologi-
cal indices appear in Yang-Mills fields, took, when working
in Minkowski space.'* Much further work is needed, how-
ever, in order to understand the topological properties of
Minkowskian field theory in this hypertoroidal framework.

6. CONCLUSIONS

The hypertorcidal formalism represents a really fruitful
mathematical tool in the search for classical solutions within
the framework of conformally invariant field theories. This
formalism has already been successfully used in the context
of sourceless Yang—Mills fields.*'* In this paper we have
been able to solve the conformal scalar equation in arbitrary
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dimension using hypertoroidal coordinates. The fact that
the solutions possess not only finite energy and action but
also (as in Liouville’s case, N = 2) interesting topological
properties is, from our point of view, a clear sign of the fruit-
fulness of this approach. We would like to end with some
comments about the stability of our solutions. As we have
stated in Ref. 4, our configuration are dissipative in the usual
time variable ¢; that is to say, that from the point of view of
usual time, r-evolution, the solutions should not be stable.
However #-evolution is also possible.'* In fact, it is the evolu-
tion that we should use in any conformally invariant quan-
tum theory. As has been proved by Liischer and Mack,'” the
analytic continuation of the Euclidean Green’s functions is
only free of kinemetic singularities if we use, instead of the
conventional Hamiltonian H, the “conformal Hamiltonian”
H, = (P, + K,). The evolution parameter corresponding to
such a Hamiltonian is precisely our 8-variable. Besides, the
energy H and H, coincide for hypertoroidal configurations,
as do those presented in this work. We should seriously con-
sider the possibility of quantizing in 8 rather than in ¢, any
conformally invariant field theory.

From the point of view of §-stability, our configurations
are perfectly stable since they are defined in a compact mani-
fold; although not t-stable, our solutions are 0-stable. An
exciting example of #-quantization has been given in refer-
ence.® Whereas the physical interpretation is not totally
clear, we consider the possibility of analyzing the 8-evolu-
tion a rather promising alternative to the quantization of
conformally invariant field theories.
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A gauge theory of gravitation is constructed with a twistor bundle as the starting point. Each fiber
is a twistor space, acted upon by the Poincaré group, which forms an internal symmetry group.
The formalism leads to a twistor action principle which overcomes difficulties encountered in
previous attempts in the literature to formulate a true spinorial variational principle.

PACS numbers: 04.50. + h

I. INTRODUCTION

Gauge theories play a fundamental role in the descrip-
tion of the basic interactions of nature and form part of pre-
sent-day attempts at grand unification. The essential fea-
tures which characterize all gauge theories are the
appearance of arbitrary functions in the description of the
fields and the existence of constraints. General relativity
contains all these features, and many papers have been writ-
ten presenting different approaches to its treatment as a
gauge theory of the Poincaré group.'

One such formalism was developed by the authors in a
previous paper” (hereafter referred as I), in which we dealt
with the Poincaré group as an internal gauge group acting on
the fibers of an appropriately constructed vector bundle
{rather than on the space-time base manifold itself) and thus
arrived at an unambiguous gauge theory of gravitation. The
essential features of the theory are the use of fiber bundle
techniques which provide a convenient framework for a geo-
metric and coordinate-free discussion and the introduction
of a five-dimensional faithful representation space of the
Poincaré group as the typical fiber. This allows the treat-
ment of the group as an internal group. The possible func-
tional form of the free Lagrangian, which must be included
in the theory in order to determine the equations of motion
for the connections (gauge fields), encompasses general rela-
tivity and the Einstein—Cartan theory as special cases, as
well as other gravitational theories with torsion which have
been proposed recently.

In addition to the inherent advantage of gauge theories
for the systematic construction and study of a wide range of
gravitational Lagrangians, they also afford a natural struc-
ture for the formulation of variational principles of the Pala-
tini type. A discussion of the general features of the vari-
ational procedure was given in I in the context of the tensor
formalism there developed.

It is well known, however, that spinors fit in with gen-
eral relativity in a most natural way; a fact which leads to the
belief that spinors are essentially simpler and more funda-

* Supported in part by International Scientific Exchange Program Grants,
National Science Foundation OIP75-09783A01 and Consejo Nacional de
Cienca y Tecnologia No. 955.
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mental than 4-vectors.>™ Thus, it appears desirable in this
context to develop a gravitational gauge theory based on
spinors rather than on tensors.®

The formulation of such a spinor gauge theory will be
the main objective of this paper. In addition, our results will
also serve to shed further light on the structure of the theory
developed in I and some of its features which will be shown
to originate within the spinor formalism in a most natural
manner.

One further result of our spinor gauge theory, which we
believe merits consideration by itself is the development of a
truly spinorial variational principle. Although gravitational
Lagrangians and field equations constructed in tensor lan-
guage have been readily translated into spinor formalism, no
action principle based on purely spinorial entities and in the
strict sense of gauge theories has been obtained so far. There
exist in fact some “hybrid” approaches in the literature,’ but
these involve variations of the Hermitian mixed quantities®
(14),.4-» and simultaneous variations of tensorial affine con-
nections and spinorial affine connections for the Palatini
principles.® If we recall that the tensorial Palatini action
principles involve simultaneous variations of the 4-vector
inner product (or metric tensor) and the vector connections,
we clearly see that what was actually done in the papers
referred to above is a mere renaming and variation of still
intrinsically tensorial quantities. In fact, from'®

L= (1), s E'B* 1°, (1.1)
L.

we see that the (1), ;-5 are nothing but the hybrid 4-vector
and spinor components of the identity tensor in .# ,. Thus, a
variation of (1,),,, -5 is intrinsically the same operation as the
variation of L, (i.e., the variation of the 4-vector inner
product}.

One naive attempt at constructing a variational princi-
ple from truly spinorial entities would be to vary simulta-
neously the spinor inner product and the spinor connections.
Note, however, that since the spinor space .%, and its conju-
gate %, are two-dimensional symplectic spaces'® for which
there is only one independent unit dyadic I, (metric spin-
tensor) and one independent conjugate unit dyadic I, vari-
ation of I, and I, would be proportional to I, and I,, respec-
tively, and the resulting equations would be scalar and the
theory trivial. The reason why this approach fails becomes
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evident when we note that the gauge group needed in I for
constructing gravitational theories is the Poincaré group,
while spinors form the representation space of SL(2, C),
which is homomorphic to the Lorentz group.

Therefore, in order to construct a proper spinor gauge
theory, we must make use of twistor algebra.'!? In fact,
twistors form the representation space of SU(2, 2), which is
{4-1) homomorphic to the conformal group C(3, 1). By incor-
porating the vertex of the null cone at infinity explicitly into
the formalism, we can break the conformal invariance while
retaining the Poincaré invariance'’ required for our theory.

In order to make the discussion of the following sec-
tions more self-contained, we review in Sec. II some of the
various spinor and spin-tensor spaces from an abstract point
of view developed by us previously.'®'* We also present in
tabular form the twistor and twist-tensor spaces and their
basic properties that will be utilized later in the paper togeth-
er with a description of our notation and its relation to Pen-
rose’s twistor formalism. The reader familiar with twistor
algebra in that author’s notation should have no problem in
following the discussion in the rest of the paper by making
use of Tables I, I1, and III.

For the more mathematically oriented reader we have
included in the Appendix a summary of the essential features
of twistor algebra obtained from an axiomatic point of view,
in which we arrive at the realization of the homomorphism:

SU(2,2)—0(4,2)—C(3,1).

We show in this Appendix how the essentially coordinate-
free approach to general relativity adopted by Penrose® can
be made further intrinsic, thus emphasizing spinors and
twistors as geometrical objects subject to formal rules of ma-
nipulation rather than seeing them as sets of components.
For notation, we rely to a large extent on the one we have
developed previously,'®'*'? since it seems to fit best the pur-
poses mentioned above.

Thus, we hope that this section and the Appendix will
serve not only as a summary of twistor algebra but also as an
introduction to an abstract approach to twistor algebra from
the axiomatic point of view of modern coordinate-free and
component-free tensor analysis.

In Sec. I11 we make use of these structures to construct
the appropriate twistor bundles on which we can base the
formulation of our gauge field theory of gravitation. Several
results in this section serve to elucidate some points of the
theory we presented in I.

In Sec. IV we apply our formalism to the development
of a truly spinorial variational principle for the Einstein—
Cartan theory. We show that the full theory emerges if we
vary only the twistor connections (gauge variables) on the
bundle space. This is what we ought to expect from a proper-
ly constructed gauge theory.

{I. SPINORS, TWISTORS AND TWIST-TENSOR SPACES

Spinors: Since we previously'* presented a systematic
discussion of an intrinsic formulation of spinor theory and
some of its computational advantages over the component
notation, here we only summarize in Table I some of the
spinor and spin-tensor spaces as well as their basic proper-
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ties, which we will require in later sections. Also, because
intrinsic notation is not commonly utilized, we give in the
same table a comparison with the component notation em-
ployed by Penrose"® in his theory of twistors. Making use of
the above structures, we can define additional twist-tensor
spaces by taking tensorial and exterior powers of % and %"
The essential features of these spaces are contained in Tables
II and III together with a comparison (when appropriate)
with the notation of Penrose.'* A more complete discussion
of these ideas, intended for the more mathematically orient-
ed reader, is given in the Appendix.

Twistors: Flat twistor space % =% ,, is essentially a
space of Dirac bispinors in which a nondegenerate Hermi-
tian inner product (s|t) is defined. This product is antilinear
in the Dirac bispinor s and linear in the Dirac bispinor t, has
the signature (+ + — —), and is invariant under
SU(2, 2).

We can relate the algebra of twistors to the algebra of
Dirac bispinors by noting [see Eq. (A63) in the Appendix]
that

(s|t) =Sa(l, — L)at, (2.1)
where § is a Dirac adjoint bispinor (also adjoint twistor) and
I, and I, are the unit spin-tensors in .%,® .7, and
Z,® 7, respectively, defined in Table 1.

The inner product in % gives a complex number which
can be reexpressed in terms of linear functionals on %, by
introducing a dual twistor space % '. Explicitly, we define
conjugate twistors 1 by the antilinear map le% —>le%" such
that

lom = (loi)* = (1|m). (2.2)
We also use the symbol © to denote the action of a cotangent
vector on a tangent vector at a point and to denote contrac-
tion operations on tensors constructed from cotangent and
tangent vector spaces.

Note that conjugate twistors are related to Dirac ad-
joint bispinors by means of Egs. (A54) and (AS5S5) given in the
Appendix. In particular, we shall require the totally anti-
symmetric alternating twist-tensor A% "* (¢*" in Pen-
rose’s notation) and A€%’"* (€,4,, in Penrose’s notation)
defined by the requirement

AZA=4L (2.3)
With A and A we can form duals of antisymmetric twist-
tensors in % "% and % '"?, respectively, by means of the fol-
lowing operations:

Be% "2—>+Be %' "% ACB, (2.4)

CeW' M aCe "t +C =1A:C. (2.5)
We will denote the space % with the element Ac% "* given
as part of its structure by (%, A). With the aid of A and A we

can now define inner products in % "% and %'"? by means
of the equations

AoB=!AA:B=+AB=A:+B

(= A'“?)B,_ 4 in Penrose’s notation), (2.6)
AoB=1AA;B=*AB=A+B
=4, B'*?! in Penrose’s notation). 2.7)
laf |
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TABLE I. Spinor and spin-tensor spaces.

Notation and expressions of elements of space

Inner products and properties

Bases and reciprocal bases
Oumlb,ll

Space Ours'® "™ Penrose'* Ours'™" Penrose
Spinor space @A g 0T At (A =0,) —TAw w, = —w'n, b, and h'.h?
E L AN S NTAN AR AP A,/_t‘,-u W AT = — T*AO* AA)A;r" = - “1"‘74 h*Ab, =5,
© =0, =0h*
©* = w'h, = o,h’
A=12}
Conjugate @,mAp AN b;,h; and b*
spinor space @ w4 h* Ah, =83
7 @
™
lam+ﬂ1‘r)—am+B1r (ao” + Br’) = aw* + B
for a.fcC
Bispinors u=w+w = (%", 7 7" UAS= —SAu=AA I, and1” (@ = 1,....4)
Fe=Fr0 F, =w'h, +7h,. (a)o,wl,‘l_ru,;r,') +rAp I°Al, =83
=00+ 70" u ‘( &, T UAS = uAs for example ~
=wh, + 7.h" = (° ,w",ﬂ”,vr] L=h,Lh=hy,t= b
S=A+@=4%, +p, b =K, P=K V=
v_A+|L —&‘h o, 0
l_l = W + ll =u
S0, ¥=omit P2 = 0'? Wy =0Ty vio= (mAM(ﬁAp, 4+ YDy = (w'A,) b,h, and h*h*
®=Ap+ - € =€4p €," =53 LeL= (s g) o b,h”and b*h,
I,=t,h*= —hh, W' =", Py~ =€, =2
LAo=0 LAr=0 w, = W€y,
(I, unit tensor
in.?,8.%,)
LR ¥=on+ AR R Vid=(wAlnap) + - v, h, b, andh*B*
=+ By =Aobig +- LiL=2 =1@* 3, N7 pg)
L=h,h"' = —b*n, e‘”_eAﬂ,e"’zﬁff +- o
LAao=0LAar=x " =", h,.h® andb*h,
(T, unit tensor @, =% ¢y., e,
lnf’zsf’zl =—6"y =€, =2
F,e S, A=or+-; B=Au+- AT =0" 7 4 AdB=(0AX)(ray) + i, b, and BN,
Bow=Aqpty+ h,h%and b*h,
S8 7, A=ma+B=pi+ AP =P AsB=A2B h,h, and h*h*
Boy =pphe + - ASB=0A%2B=0 h,h? and hh,.
M= Fie S, x=X=X"=o0o+ X1 =" 4 xy=—X4Y XA, = (m"pa) e,=E, and e*=E* u =0,...,3}
subspace of = A+ An+ =7 A%+ A+ = — (wAp(AAp) XA )+ (7p,) e, =8 =—-E4E,
Hermitian tensors Yes =Patis+HhePs+ —(AAp)mAp) + - XAty ) 4 o ece,= —E 1E =g,
in 7,05, E, = (2)7"}(b}h, + h;hy)
= — (27" b, + hiby)
E,= —i2)""*bjh, — hih,)
—(2)7'(8;b, — b3hy)
E - B S=uv4 - 5% = u*F 4 .. S5 T=[uAs)vat) + ST s = u°,)
T = st 4 - T«a =Salp + X (VPrg) 1,1, and IV
S=uv 4 = W 4 1, ¥and 19,
S'=5=mu+ S‘ = P




TABLE II Twistor and twist-tensor spaces.

Notation and expressions of elements of space

Space Qurs ' Penrase™*
Twistor space a,b,..,m1,...st,..
U=U,, sty irac bispinors of the form Zolo'm, ) = (0w 7))
u=o+m* =wh, + 7,0
adjoint twistor
E,b,“;,m,l,...; adj_oin_t Diras bispinors of the form not defined
u=@+7*=0"h, + 70"
not defined Z° = (0" 0", )
Dual twistor space bl
U=, | 1 SN S du:;l Dirac bispinors of the form not defined
{the set of linear u=w'h, +7,.h'
functionals on %) conjugate twistor
dual Dirac bispinors of the form Z, = (rym,e” 0"
. h*
given by the antilinear map
ue% —ue#’
@ = gy M=t gt,@ot, + MU s gagan, 7
{mth tensorial
power of %)
K =k ek} ok, + - not defined

@ ok _ & U’

K=k ok&ak, +-

Koo, = Yo Vo¥y 40

U "=A"Y B=t,AAt, + - plemtml L glagza zm 4
{mth exterior power A€ "* (alternating twistors} €18 = ) T = )
of %)
C =kj Ak; A Ak Plap )= Lups P
Ae'™? €oiis = €lapys p €ory = 1
{alternating twistors}
@t p
C=k Ak A Aky + - Ciomny) = Y. Y, ---i’m o
A=Az (alternating twistors) €apys = €lapys)s €y = 1
=%, *p=p Pl l=)erp, = plas)

= [PPe% ™', Preal} *i =1 =1, =h_,h" (infinity twistor)

*0=0=T,=h,h" (origin twistor]

) 0o 0
auq—-» —
! [ 0 o] s [0 e""]

0 o e oo
OMH[O c‘"’]‘o"”:[o 0]

A twist-tensor Be% 2 for which
BoB=0 (2.8)

is called null, and twist-tensorsin % "*of theformB =1Am
are called simple and satisfy the property

Bo*B=0. (2.9)
Of special importance to establish a correspondence
between twistors and Minkowski space is the subspace of

twist-tensors in % "? with inner product @ and for which the
condition

P =PoP = i AP (P\up | = Piap | in Penrose’s notation)
(2.10)

is satisfied. These twist-tensors are called real and the sub-
space will be denoted by # = &, , = {P|Pe% "?, P real}.
Theinner product o in & hassignature(+ + — — — —).

Null, real twist-tensors form a null cone in the six-di-
mensional % *? space. Among these, we distinguish a privi-
leged element I, which is simple and invariant under the
action of the Poincaré group. I can then be identified with
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the vertex of the null cone at infinity and is known as the
infinity twistor (or metric twistor). It can be readily shown
that

I=L=hh"= —h,Ah,

( = the unit tensor in ., ® 7,). (2.11)

Correspondence with Minkowski space: Introducing I as
part of the structure of (%, A), i.e., retaining only that group
of linear transformations which leave I invariant, breaks the
conformal invariance of % and leads to a faithful representa-
tion space of the Poincaré group & . This subspace will be
denoted by (%, A, I.

Moreover, introducing I as part of the structure of &,
we can construct a hypersurface

¥ = {P|Pe&, PoP =0, IoP =2},
which has a one-to-one correspondence with the elements of
Minkowski space-time. This hypersurface is the intersection
of the null cone in & and the plane IoP = 2, and is invariant
under the action of & ® Z.

The tangent space #p at a given element Pe %" is the
set of elements Te# which are tangent to the hypersurface
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TABLE III. Scalar and inner products in twistor and twist-tensor spaces.

Ours'®:!* Penrose'*
Inner product in %
(sit) = (t|s)® (Hermiticity) not defined
signatore (+ + — —)
Scalar product between %’ and %
k'l =Jok’ = complex number not defined

fom = moi=(1|m)
fom = (iom)* = TA{I — O}am

Eu‘(’ir = (hn_'lim) = —€gq
hyoh, = (hglh)* = —eg,
B, %, = (by.lb,) =0
byob, = (Bplh,.)*=0

Inner product in % *™

(MIN) = (t,s,) ({t:]8,)-¢t,, I8,,) + - not defined

Contraction operations between twist-tensors in %2 * and twist-tensors in % **

MoK =t,8--8(t,°k/}® ok, + -
not defined
MIK =t o8,  kt.k;}e-ok;

MoK =t,s--~o(t,,,°f(.)e---@l2k +

M: l.(=t.s-~~s(t,,,, ,°l‘(.)(t,,,°f(,)e~-~eﬁk
AlA=4

*B=1A: B

**B—JATA'B

gy [T
M Kﬂm - TPy
€€ = 4
Biog) = YeappB™
Blo#) < jebrog B4

MR, gy = Z7ZZ Y, Yy ¥y 4o
oy =Z0Z 20y, Z™Y,

Inner product in % * ?

APB=]A:A:B="A B=A>B

AP B g = U5, BT = Ayo5 B!

. . . . . . ]
Contraction operations between twist-tensors in % * ? and twist-tensor in %"

rea) twistors

*P=P-P=jAlP Prag) = {€arsP? = Ploy,

% at P. It follows that #, = {T|Te%, 1cT =0,
PoT = 0}. The inner product o in %7 is the Minkowski
inner product with signature (+ — — — ). With this inner
product, #" becomes a pseudo-Riemannian space with a
curvature tensor which is zero everywhere, i.e., # is intrin-
sically flat.

Note that if we further choose another element O of #~
as a reference point (origin twistor), and we require it tobe a
part of the structure of (%, A, I), i.e,, we retain only the
group of linear transformations that leave I and O invariant,
then the Poincaré invariance is broken and we are left with
the subspace (%, A, I, O), which is invariant under the ac-
tion of the Lorentz group. In the Appendix we show how the
structure of this space leads to a unique bilinear antisymme-
tric inner product in %, an adjoint operation in %, and a
unique decomposition % = ., & %, which serve to relate
twistors to Dirac bispinors.

It is also easy to show that
O=I,=h,h"" = —h; Ahj
(the unit tensor in 7, ® 7). (2.12)

Some twist-tensor spaces: To conclude, we now list some
of the twist-tensor spaces that will be required in the next
section.
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First, we use the space % = (%, A, L) as a representa-
tion space for the Poincaré group &, which preserves the
given structure of %.

The group & of transformations on % gives rise to the
tensor product group Z ® & acting on % ®2. The space
& = (%, o, I) of real twist-tensors in % "2 is invariant, and
its structure is preserved under the action of % @ &, and
thus & is a representation space for the group 2.

We define the two parallel five-dimensional planes

& = {P|Pe¥,1oP = 0} and ¥ = {P|Pe%, IoP = 2}, the
two parallel four-dimensional planes ¥ = %", = [P|Pe,
OcP =0} = {P|Pe?, IoP=0, OgP =0} and
< = [P|Pe, OcP =0} = (P|Pe¥, IcP =2,
OcP = 0}, and the null cone.#" = {P|Pe#, PoP = 0}. The
surface we discussed previously is given by
Y =AnK = [P|Pe&, PoP =0, IoP = 2}. The planes
# and ¥ are closed under vector addition of their elements;
thus they are vector subspaces. Figure 1 shows the relations
among these surfaces.

Under the action of & & 2, the element I and the sur-
faces #°, %", 4, and # are invariant. The element O is not
invariant, but it remains on the invariant surface %". The
plane . is not invariant, but it remains contained in the
invariant plane %". The plane .¥ is not invariant, but it
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FIG. 1. Twist-tensor hypersurfaces and relation to Minkowski space—time.

remains contained in the invariant plane #°. Also note that
& = F @ {AI}, where {Al] is the one-dimensional sub-
space spanned by L

The plane . is tangent to the invariant surface %" at
O. Since ¥ =¥, is parallel to .¥ and is also a vector sub-
space, # acts as the tangent vector space to the surface % at
0. Likewise, at each point of % there is a similar tangent
vector space, and the inner product in these tangent spaces
provides #~ with the above-mentioned pseudo-Riemannian
intrinsic structure [with signature (+ — — — )and zero
curvature tensor] so that %" has the structure of Minkowski
space and thus provides a model of space—time.

lll. GAUGE THEORY WITH A TWISTOR BUNDLE

The twistor space % = (%, A, I) will now serve as a
representation space in terms of which the Poincaré group
will be treated as an internal symmetry group for a gauge
theory of gravitation.

We first summarize the material of this section. Starting
with a four-dimensional manifold .#, we set up the twistor
bundle % (.#) and the twist-tensor bundle &(.#). A given
cross section O of & (.#), called the origin twist-tensor field,
is assumed. Given O, a bundle ¥ (#) is uniquely specified.
Here, the spaces %, &, and ¥ are the typical fibers of the
U (M), €(#)and F (.« ) bundles respectively. Next a con-
nection D on the % (.#') bundle is assumed to be given. This
connection naturally gives rise to a connection D (same sym-
bol) on & (.#), which in turn can be projected to give a con-
nection D” on % (.#). The action of D on O gives a field J,
which can be utilized as a map that takes cross sections of the
tangent bundle .7 (.#) into cross sections of ¥ (#). The J
field makes possible the mapping of other objects from
Z (A) such as the inner product, the connection, and the
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curvature tensor into corresponding objects on .7 (.#). Since
these objects are already uniquely specified on . (.#), but
not on .7 (), the application of this map imposes a unique
metric structure and connection on .7 (.#).

The curvature tensor R, for the & (.#) connection D is
decomposed uniquely into the curvature tensor R for the
F (#) connection D plus another term constructed out of
a uniquely defined tensor T . Under the above map, T .-
goes into the torsion tensor for the imposed connection V for
the .7 (.#} bundle. Finally the curvature invariant for the
D” connection and for the V connection are shown to be
equal. With the imposed metric structure and connection on
T (#), one is ready to set up Lagrangians for the gauge field
theory. However, the Lagrangians can be equivalently ex-
pressed directly in terms of the metric structure on the
# (.#) bundle and the connections on the % {.#)and & (.#)
bundles.

We construct the twistor bundle (% (#), #, %, m, 7,
@), where % (.#) is the bundle space, the base space .# is a
four-dimensional manifold, the typical fiber is the twistor
space % = (%, A, 1), 7 is the surjective projection of % (.#)
onto .#, the Poincaré group Z is the structure group of the
bundle, and ¢ is a set of homeomorphisms that establishes
the local triviality condition.? At each g€ .#/, the fiber above
gism 'qg=%,=(%,, Alg), 1lg)), a space with structure
isomorphic to that of % = (%, A, I). The action of Z on
each fiber % , is represented by the group of linear transfor-
mations &, which preserves the structure of % ,.

Let I'(# , % (.#')) denote the space of smooth cross sec-
tions of the bundle. An element ue I'(.#, % (.#)) is a twistor
field, which associates a twistor u(g)e % , with each point
ge # . Note that Ac I'(#, % "*(.#)) is a twist-tensor field,
having its value A(g) at g in %, "*. AlsoXe I'.A', % "*(.4))
is a twist-tensor field having its value I{g) at g in %, "*.

A twistor connection, i.e., a connection D on % (.#), is
amapD: I, U (M)~ M, T (H)® U(H)), where
J'(#) is the cotangent bundle over .#, by means of which
eachue I'(#, % (.#)) goes into Deoue N4, 7' #)

& % (.4 )). Defining

Dyu =x°(Dgu), (3.1)

where x=Xe I'(#, .7 (#)), and Dyue [ (A4, % (#)),
where 7 (_#} is the tangent bundle over .#/, then D, satisfies
the following axioms:

Dy(u+v)=Dyu-+ Dyv, (3.2a)
Dy ( fu) = (Xf)u + f(Dyu), (3.2b)
Dy, yu=Dyu+ D,y (3.2¢)
D, yu =g(Dyu), (3.2d)

where fe I' (.#, C) is any smooth complex scalar field and
ge I’ (#, R) is any smooth real scalar field. Also

X ({ujv)) = (Dyu|v) + {u|D,v), (3.3}
D,A=0, (3.4)
D, I=0, (3.5)

because the structure of the fibers have to be preserved. Note
that once D, is defined on twistor fields, its action on twist-
tensor fields is determined. Thus, in particular, Dy A and
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D, 1 are well defined.

Other various twist-tensor bundles may now be formed.
One of particular interest here is (¥ (.#), #, &, 11, 7 .., D),
where &(.#) is the bundle space, the base space .# is the
previously mentioned four-dimensional manifold, the typi-
cal fiber is the twist-tensor space & = (&, o, I), T is the
surjective projection of & (.#) onto .#, the structure group
2 « is the tensor product group & ® Z actingon &, and @
is a set of homeomorphisms constructed with the aid of the
set ¢ toestablish thelocal triviality condition. Ateachge .#,
the fiber above gis IT ~'qg = &, = (&, o, I(g)), which is the
space of real twist-tensors in % ,"?, and consequently its
structure is isomorphic to that of & = (%, , I). The action
of 7, ineach fiber & is given by the tensor product group
P, 02,

Ateach ge .#, we shall be interested in the hyperplanes

7, ={P,|P,e¥, IgoP, =0}and ¥ = [P, P €&,
I{g)oP, =2}, the null cone N, ={P,|P ¥, PP,
= 0}, the surface 7", =N K, ={P,|Pe¥ PP,
=0, I{g}oP, =2}, and the plane ¥ ={P [P e,
O(g)eP, =0} = [P,|P,e %, I(g)oP, =0, OlgjoP, =0].
A choice of an origin O|g) in each %", gives the twist-tensor
field O appearing in the definition of # .

Let I'(.#, & (.#')} denote the space of smooth cross sec-
tions of the bundle & (.#). An element Ve I'(#, &(.#))is a
twist-tensor field, which associates a twist-tensor V(gle &,
with each point ge .#. We shall call elements of the cross
section I'(.#, & (.#')) vector fields.

The twistor-connection D, by its action on twist-tensor
fields, gives rise to a twist-tensor connection D on & (.#). It
isamapD: A, & (M )\ H, T (H)o &(4)) by which
eachVe I« , & (#)) goesintoDe Ve .4, 7" (4)
® &(.#)). Defining

D,V =xoDgaV), (3.6)

where D, Ve I'(.#, € (.#')), we can show that D, acting on
the bundle %’ (.#) has the properties

Dy(V +W)=D,V + D,W, (3.7a)
Dy(gV) = (Xg)V + g(DxV), (3.7b)
Dy, V=D,V +D,V, (3.7¢)
D,V =g(DyV), (3.7d)

where ge I' (.#, R) is any smooth real scalar field. Also, be-
cause of (3.4),

X (VoW) = (Dx V)oW + V(D W). (3.8)

Note that for arbitrary twist-tensor fields Le I'(.#,
Y “}(.#)), we have

+[(DyL)] =Dy +L. (3.9)

This property leads to the result that, for real twist-tensor
fields Le I'(.#, & (.#)), the covariant derivative D, L is also
real, i.e., Dy Le I'(#, & (&)

Induced structure on (M) from & (.«): The selection
of an origin twist-tensor field O makes it possible to define a
unique map from .7, to ¥ for each g in .« . This map leads
to a unique way of imposing a metric structure and connec-
tion on the tangent bundle 7 (.#).
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Note that, although we are introducing an origin twist-
tensor field O in the theory, it is not regarded as a privileged
field to be included in the specification of the structure of the
fibers. Furthermore, it will not be invariant under parallel
transportation. As pointed out in a similar situation dis-
cussed in I, this field O imposes no special restriction on the
theory since a change in the choice of O can be compensated
by a corresponding change in the connection D such that a
completely equivalent theory is obtained. Arbitrary changes
in O can be generated by the action of the Poincaré group.
The connection D also changes according to a definition of
the action of the Poincaré group on twistor connections. The
J field (to be defined next) is also changed; however, the
resulting theory is equivalent to the original one in that the
induced metric structure and connection on the tangent bun-
dle remain unchanged.

Now we introduce a tensor field J, with value J(g)e.7",

® &, at point g, defined as

J=DgO.
We shall need the following theorems:

Theorem 3.1: If P is an /7, -valued vector field, then
DyPis an 7, -valued vector field. If P is a %" -valued vec-
tor field, then D, P is an #° -valued vector field.

Proof: Assume IoP = ¢, where the constant ¢ =0 or 2
in the respective cases of P being 5, -valued or %~ -valued.
Then

(3.10)

X (IcP) = (Dy1)oP + Io(DyP), (3.11)
from which we immediately get

Io(DyxP)=0. (3.12)
Thus D, P is #°,-valued.

Theorem 3.2: Jigle 7, ¥ ,C.T ;8 & .

Proof: From 0O = 0 we get

0 = X (000} = 2(D;0)c0. (3.13)
Then

x°(D & 0)c0 = (D, 0)c0 = 0. (3.14)
Also, from Theorem 3.1, we have

x°(D ® O)el = (D 0)el = 0. (3.15)
Thus we have J(g) = (D®0),€ 7, ® ¥, since .#, is the

subspace of &, orthogonal to both O(g) and I(g).
As a consequence of this theorem, at each g, J(g) maps
7, into F  as follows:

x,€ 7 ,—x,0dge F,.
With the additional assumption that J(g) for each ¢ is nonsin-
gular, this map is a bijection of 7, on 7 e

The inverse map L,e ¥ ,—>L, oF(gle.7, from &,

onto.7 , is given by a unique ¥ , ® 7 -valued tensor field F
satisfying the requirements

zoJoF = 2 (3.16)
for every 7 -valued vector field z and
LoFoJ =L (3.17)

for every # -valued vector field L. Note that J maps each

7 ,-valued vector field z onto an F ,-valued vector field
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zoJ, and F maps each % ¢-valued vector field L onto a .7, o
valued vector field LoF. We also, have

OgF =0,
IcF =0.

(3.18)
(3.19)

The inner product in .% , is mapped into an inner pro-
ductin 7", by means of the J map according to the equation

X,'y, = (x,°d,)ely,°d,), (3.20)
wherex,, y,€ 7, and J =J(g). It follows that the unit ten-
sorsI(gle ¥, © %, and I -(g)e T, 7, defined by the
equations I-(g)oL, =L, and I,(¢)}x, =x, for L,e ¥,
and x,€ 7, are related by

I, =JoI, o], (3.21)
where Je & ¢ ® 7, is the transpose of J.

Given the method of mapping vectors from %, into
7 ,» the mapping of tensors from . > "into .7 " is straight-
forward. For convenience in subsequent calculations, we use
the notation (oJ),, (oF),, (Jo)k, and (Fo), to define linear
maps in analogy to what was done in I. Thus (3.21) can be
rewritten as

Ly =1,-(cd)y(°d),, (3.22)
and making use of (3.16) it can be inverted to yield
I~ = L (0F),(oF). (3.23)

Mapping of connections with J: If V is an #  -valued
vector field, D,V is not necessarily another .# _-valued vec-
tor field. However, according to Theorem 3.1, we do know
that it is an 7, -valued vector field. If we project Dy V onto

# , by means of I, the result defines an .# -connection

D7 4 (i.e., it operates on F ,-valued vector fields to produce
F ,-valued vector fields) according to
D7 4V =1,0(DyV). (3.24)
To reexpress this in a different form, we write
D7V =D,V — {120+ Oeljg(D,V)
=D,V — I8 O)e(DyV)
=D,V + II[DyO)cV. (3.25)

Now define the connection D * s for & ,-valued vector fields
V, by this new expression, i.e.,

D*,V =D,V + II(D,O)eV. (3.26)
Note, in particular, that

D#,0=D,0, (3.27)

D, 1=D,1=0, (3.28)
and for # -valued vector fields V,

D¥ V=D7,V. (3.29)

Theorem 3.3: The % -connection D” is compatible
with the inner product, i.e.,

X (VoW) = (D7 ,V)oW + Vo(D 7 4 W)

for & ,-valued vector fields V and W.
Proof: For # _-valued vector fields V and W, we have

(3.30)
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(D7 xV)oW + V(D7 x W)

= [DxV + {I(DxO)oV oW

+ Vo[DyW + 11(D, O)oW]

= (DxV)oW + Vo(Dy W) = X (VoW) (3.31)
since IoW = 0, VoI = 0, and D, is compatible with the in-
ner product.

Note that the connection D # is not compatible with
the inner product.

The .% -connection D” is mapped onto a connection V
on the tangent bundle .7 (.#) by means of the equation

Vyz=[D7 y(zod)]oF (3.32)
for 7 -valued vector fields z. Equivalently,

(V,2z)od = D7, (z0]). (3.33)
Since I~ oF = F, we also get from (3.24) the result

Viz=[D7 y(zod)]oF = [Dx(zod)]oF. (3.34)

Theorem 3.4: The connection V is compatible with the
inner product in .7 (.#).
Proof: Let y and z be aribtrary .7 -valued vector fields.
Then, making use of (3.20), (3.30), and (3.33), we get
X(yz) = X[(yod)o(zoJ)]
= [D 7 xlyod)]o(zed) + (yod)o[ D7 x(z0J)]
= [(Vxy)od]o(zed) + (yodlo[(Vxz)od ]
= (Vxy)z + y*(Vyz). (3.35)
Curvature tensor: For the & (.#) bundle, define the cur-
vature tensor R, with valuesin7 8.7, 0%, 0 & by
xy: Ry0V =(DyDy —DyDy — Dy )V (3.36)
for vector fields x, y, V with values x(g), y(gle 7, and
V(gle € ,. We prove the antisymmetry property of R, under
the transposition (34), which exchanges the 3rd and 4th vec-
tor files.'®
Theorem 3.5: (34) R, = — R,
Proof:
XY (VoW) =X [(DyV)eW + Vo(D,W]]
= (DxDyV)oW + (DyV)o(DxW)
+ (DxV)o(DyW) + Vo[Dyx D, W); (3.37)
also,
[X, Y](VoW)
= (Dx.y |VIoW + V(D y }W). (3.38)
Taking (3.37) minus a similar equation with X and Y inter-
changed and subtracting (3.38) gives
[(DxDy — DyDy — Dix vy )V]oW
+ Vo[(DxDy —DyDy — Dixy )W) =0,
in which the equation (XY — YX — [X, Y])(VoW) =0 was
used. This results in
xy Ry 8 (WV 4+ VW) =0,
xy: {[1+(34)]R,} S WV =0
for arbitrary x, y, V, and W. Therefore,
[1+ (34)]R, =0.

We also have

(3.39)
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Theorem 3.6: Ry has its valueatgin 7,87, 8 &,

X,
Proof: The equation
xy. Ryol=0

follows from the fact that D, I = Qfor all X, Since x and y are
arbitrary, we have

Ryl =0. (3.40)
Also, from (3.39),
[B4Ry ol = —Reel =0. (3.41)

These two equations imply that Ry has its values in 7
8T 0K 0K ,.

Now define the tensor T~ by

T F = Rg @O-
For this tensor, we have

= (4[1+ 34)IR;} 3O =0.

Thus T 5 has its valuesin 7, ® 7, @ F .

Now define the tensor R by

Ry =R, —i[1 - (34)}(T~ 1)
For this tensor,

+4Tsc0)e1
=Ty —Ts +0=0. (3.45)

Also, due to the antisymmetry of R under the (34) transpo-
sition, we have

[B4R5]00O= — R0 =0. (3.46)
The last two equations, along with the easily proven facts
that Rz oI = O and [(34)R » | ol = O gives us the result that
R hasitsvaluesin7; ® 7, ® ¥, ® ¥ . Rearranging the
terms in (3.44) gives

Ry =R +4[1 —(34)]T; o1,
which is a unique decomposition of R, .

For the connection D %, we have the curvature tensor
R”, with valuesin 7, 8 7, ® €, & &, defined by
xy . R¥ .oV

=D? D%, —D*,D¥y —D? )V
for & -valued vector fields V. Using (3.26), we have

(3.42)

(3.43)

(3.44)

(3.47)

(3.48)

xy:R?,oV =D %, [DyV + {I(D,0)cV]
—-D%, [DxV + (D4 O)oV]
- D[X,Y ]V - %I(D[X,Y ]O)OV
=Dy [DyV + (D} 0)eV]
+ Dy Olo[DyV + (D, 0OjoV]
— Dy [DyV + (D, O)oV]
— (DyO)o[DyV + (D, OV ]
—Dyy v — (D x ¥ 10)eV
= (DxDy —DyDy — Dy )V
+ Dy DyO — DyDyo — Dy y OV
=xy.Rsy0oV+lxy: T,oVL
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Therefore,

R®, =R, + 434(T5 a1, (3.49)
Similarly to (3.42), we define for the connection D #

T#, = R®, 0. (3.50)
Thus it follows from (3.49) and (3.43) that

T, =T,, (3.51)

ie, T? > hasits values in 7, ® 7, ® F . Also, substitu-
tion of (3.47) into (3.49) results in
R?, =R, +1[1—(34))(T5 ®1)
+134)(T- 1)
=R, +IT, ol (3.52)

This is a unique decomposition of R ..
Because of (3.48), (3.27), and (3.29), we have

xy . R? ;00
= (D ngY -D ffYD,\{ —Dixy))O
=D*,(yoDe0O)— D" ,(x°D® O) — [x,y]°D® O
=D74(yod) — D7 y(x0J) — [x, y]oJ
=(Vyy — Vyx — [x,y])ed =xy [ T;-0J,

where T - is the torsion tensor on the tangent bundle with its
valuesin 7, ® 7, ® 7 . Therefore,

R? .00 =T, oJ. (3.53)
In view of (3.50] and (3.51), this becomes

Ty =T,0Jd, (3.54)
or, equivalently,

T, =T, oF. (3.55)

With the aid of (3.48), (3.29), and (3.33), we have
xy . R, o(zoJ)
=D X)XD *y—D?*,D gX —-D 6)[X,Y )zod)
=(D7yD%, —D” D7 — D7 xy Nzed)
= [{VXVY — VYVX - VEX,Y I)Z]OJ
=Xxy. (R, oz)oJ,
where R - is the curvature tensor on the tangent bundle with

itsvaluesin 7, ® 7, ® 7, 8.7 ,. Thus,

Ry of =R (J),. (3.56)
Moreover, noting that, by virtue of (3.52),

R?, oJoF =R¥ . o(FoJ) =R? .ol =R, (3.57)
(3.56) yields

R, =R, (oJ),(°F), (3.58)
or, equivalently,

R, =R (oF)(cd);. (3.59)

Performing contractions on R - gives the Ricci tensor

R =C(13)R_-, (3.60)
with values in 7, ® 7/, and the curvature invariant

(Ro-);=C(13;24)(R - °I-), (3.61)

where the symbol C( ) denotes contraction on the designated
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files, for example, C (12)(m’ ® v) = m'ov form'e 77, at g and
ve ., at q. Similarly, from Rz we may also get a second-
order tensor

R = C(13, o)(F°R ) (3.62)
with values in 7] @ ¥, and a scalar
(Rs ), = C(13;24, o)[(Fo),(Fo),R > ]
= C(13;24, o)[ (Fo),(Fo),R, |, (3.63)

where C(, o} in these two cases denotes contraction again but
with respect to the o product; for example, C (12, o)(L ® M-
) = LoM for L, Me ¥ | at ¢. These quantities are related as
follows:

(3.64)
(3.65)
Local Poincaré transformations: Let ¥(P)and I" (P) re-

present the action of an arbitrary local Poincaré transforma-
tion & onthe % (.#)and & (.# ) bundles, respectively. Then

u—u® =P,
V VP =T(P)V,

where uand u””’ are % _-valued twistor fields and V and V**)
are & _-valued twist-tensor fields. Let the action of 2 on
twistor connections

D, —» D,
be defined by
Dy"u=yP)Dy [P '] (3.66)
for arbitrary u. To the twistor connection D! on the
% (.#) bundle, there corresponds the twist-tensor connec-
tion D, ¥ (same symbol) on the & (.#) bundle. It follows that
DyPV = I'(P\D, [P~ ")V] (3.67)

for arbitrary V. The covariant gradients D@ Vand D¥'e V
corresponding to the Dy and D, "' connections are .7
® & ,-valued fields defined by

XO(D ® V) = DXV)
(3.68)

xo(D?' @ V) = D, PV,

respectively, for arbitrary tangent vector fields x=X.
Now we compare the inner products

xy = (xeJ)o(yod)
and

x(1"y = (xoJ¥)o(yod")
of the tangent vector fields x=X and y=Y induced on the
tangent bundle by the maps generated by the fields
J=D®O0and J¥' = D" © O, Let

F, =R, R, e, 0 (geR, =0}

= {Rq IRqe gq’ I(Q)QRq = O,
0'"g)eR, = 0}.

It follows that & "' is the image of & , under the map I'" (P).
Note that xoJ is .# -valued and x o J* is % P-valued.
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Furthermore,
xoJP) — XO(D(P) ® O(P)) — D‘;:’O(P)
=I(P)Dx[I"(P~")['(P)O] =T (P)DxO
=T (P)[xo(D ® O)] = I'"'(P)(x°J). (3.69)
Now the inner products are
x()7ly = (xod")e(yod”)
= [I"(P)(xed) ][I (P)y°d)]
= (xoJjolyod) = x-y.
Thus the inner product induced in the tangent bundle is in-
variant under .

Now we compare the connections V, and V,*' in-
duced on the tangent bundle by the connections D, and
D, "), respectively, by means of the maps generated by J and
J¥), respectively. For tangent vector fields x=X and z, we
have

(Vx2)od = Dy” (z0J),
where

Dy”V =D,V + iI{D,O)cV

for # ,-valued twist-tensor fields V. Also we have

(3.70)

(3.71)

(V,Flzjod® = p, 127 Fligogirn,

where

(3.72)

0,77 = 1PV 4 1D, PPNV

for 7 -valued twist-tensor fields V. Then
(VX'PJZ)OJ‘P’

(3.73)

_ DX‘P"7(P ’(zoJ(P))

— DXU’)(ZQJ(PD) + %I(DX(P’O(P))Q(ZOJ‘P’)
= (P)Dy [T (P I (P}zod)]
+ T (P\Dy [T (P~ (P)O)}ol T (P)(z0d)]
— I'(P)Dy(203) + JID5 O)o(zod)
= I'(P)| Dx(zod) + 1I(D, O)a(z0d) ]
=T (P)\Dy” (zod) = I'(P)[(Vxz)oJ )
= (Vyz)oJ¥), (3.74)

where we have used I" (P )I = I and Eq. (3.69). Applying the
inverse of the map generated by J*/ gives

VP2 =V,z (3.75)

Thus the connection induced in the tangent bundle is invar-
iant under 2.

IV. TWISTOR VARIATIONAL PRINCIPLES

As we have shown in I, given a Lagrangian constructed
from the gauge fields (connections), we can obtain the equa-
tions of motion for these fields by means of an action princi-
ple in which the fundamental quantities to be varied are the
Dy.

Moreover, since any two linear connections may differ
only by a linear transformation, we have

(6Dy)V = (6B oV (4.1)
for each # -valued twist-tensor field V, where 6By (g)e €,
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® & . If we now vary (3.8), we get
0= (6D, V)eW + V6D, W)
=Voill + (12)]6By }oW.
Since V, W are arbitrary, it follows immediately that
[1+(12)}6B, =0. (4.3)
In addition, setting V = I in the first part of (4.2) leads to
Ic6B, = 0. (4.4)
Thus, (4.3)and (4.4) combined imply that By (g)c 7,  F#°,
and 6B(gle 7, ® ¥, ® #°,, where §B|(q) is defined by 5B,
= Xx©°6B, in analogy to what we did in L.

To relate this variation of a connection on a twist-tensor
field to the variation of the twistor connection

(6D )l = (5My)al, (4.5)

where SMye Z®? and lis a % ,-valued twistor field, ob-
serve that

(6Dx)V = (M )aV — Va(6M,)
= {(23)[(6M)(I + O]
+ (I 4 O)(5My)]} 4 V. (4.6)

Substituting (4.1) on the left side of (4.6) and using (2.27) on
the right side of (4.6) yields

6B,V = %{(23)[(5MX)(I + 0)
+ (I + O)6My)]} 2 AoV,

(4.2)

(4.7)
ie.,
6By = 1{(23)[6My(I + O) + (I + O)(6M,)]} 4 A.
(4.8)
Note that by putting V = O in the first part of (4.6) leads, in
particular, to
83y =8Dy0 =8B, 0 = 5M, a0 — Ou8M,,
= 5M, a0 — (M, 40, (4.9)
which relates the variation of J, with the variation of the
twistor connection.
The space in which 8M,, has values at each point ge.#
is given by the following:
Theorem 4.1:

5M € [(Yz ® j’z)g (?2 ® 3’;)] @(fz ® ?2) (4.10)

where (7, ® ,.%,) is the subset of all symmetric tensors in
e 2,_(7 »® .7, is the subset of all symmetric tensors
in #,8.7, (£,8,5,)0(F,8,7,) denotes the real
part (with respect to the adjoint operation] of the direct sum
of these subspaces, and .%°, ® ,;; 7, is the subset of all anti-
Hermitian tensors in %, ® %,

Proof: From (3.5) and the first part of (4.6) we have
0= (6Dy)I = (5My)al — Ia(6M,).

Thus _
M al = (6M,al}, (4.11)

ie,Myale ., & 7, Equation (4.11) implies the direct
sum decomposition

M, € (Y2 ® fz) 8 (S, 7,
Now, from (3.4) and (4.5) we get
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0=(8Dx)A = [(6Mya), + (6Mxa),
+ (6Mya); + (6Mya), ] A
= — (M)A (4.12)

[where again we are making use of the notation introduced in
I, Egs. (3.14) and (3.15)]. Equation (4.12) follows from a well-
known result in linear algebra with the symbol (6M ), de-
noting the scalar invariant of M.

Therefore, (4.12) results in

(6My),= —(6My) 2 (I+0)=0,
and (4.11) together with (4.13) implies

(4.13)

M, € (Yz ® fz)ee(?z ® 72)@{5”2@?2).(4.14)

Finally, from (3.3) and (2.63) we can write
X (1lm) = (Dy1jm) + (1| Dym)
or o L
X [1a(I — O)am] = ( Dgl)a(I — O)am
+TA(I — O)aD,m.
Varying this last expression gives
0=(Myal)a(l — O)am + la(I — O)aéM, am)
= —1a6M,a(I — O)am + La(I — O)a8M, am,
Le.,
0=(I—0JabM, + [ T—0)aéM, |
Equation (4.15) together with (4.14) leads to
EMXG[(YZ ® fz) ® (372 ® ?2)] 8 (S, %?2).
s R s al
Q.E.D.
We can now apply these results to specific Lagrangians, con-
structed from (3.44), to obtain twistorial equations of motion
for the corresponding gauge fields. In what follows, we shall
concentrate on the Lagrangian which will result in a spinor-
ial formulation of the Einstein—Cartan theory. The extension
of the procedure to other permissible Lagrangians is suggest-

ed by the approach here adopted and is rather straightfor-
ward. Thus we take

1
L=— Rc),‘sd
. ij(k) p

(4.15)

= i J C(13;24,0)[ (F°),(Fo),R ] dp, (4.16)

wherek = 87G /c*and C (13;24,0)denotescontraction of the
1st with the 3rd and 2nd with the 4th twist-tensor files via the
© operation, and

dp = [dQ(J)(0d)5(d),(d),] B3 N (4-.17)

is the scalar element of volume on .# defined by Eq. (3.45) of
I, except that here Nigle# ,AF A F  AF,

NZEN=—4, and Jgc7,87,.
We consider first the variation of (R ;- ), . This is given by
8(R 5 ), = C(13;24,0)[ (8F°),(Fo),R¢ + (Fo),(5Fo),R,

+ (Fo),(Fo),6Ry ]. (4.18)
If we now recall Eq. (3.17}, we have
Lo(8FeJ + FodJ) =0,
from which we get
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O0F = — FobJoF. (4.19)
Substituting (4.19) into (4.18) results in
SR ;) = C(13;24,¢)[ — (Fo5JoFo),(Fo),R,,
— (Fo),(FodJoFo),R . ]
+ (Fo),(Fo),6R, ]. (4.20)
The variation of the curvature tensor R, is given by
xy.6R, oL =6(DyD, — DyDy — Dy y )L
=6ByeD, L + D4 (6B, cL)
— 8ByeDyL — D (6BycL)
— 6By y oL
= Dx(‘SBY)(DL
~ Dy (6By)oL — 8By y oL (4.21)

Furthermore, making use of the relation (3.34), we have
Dy (6B, ) = Dy(y°oJoFo8B)
= [Dx(y°d)]oFoSB + yoJo[ Dy (FoéB)]

= (Vxy)o6B + yoJo[ Dy (Fo6B)]. (4.22)
Consequently,
xy. 6R,oL
=xy., T, 06BcL
+ [yodoDy(FoéB) — xodoDy(FosB)]cL,
ie.,
SR, =T, °5B — [1 — (12)] [Jo(12)D(Fo6B)]. (4.23)

Inserting (4.23) into (4.20) and carrying out the contractions
yields
8(R;), = — (FoSJoF|P[(1243]R, + (14)R, |OF
+ [(123)(Fo),(Fo),T, | o6B — C(12)

X [D(FS [1 - (23)16B)oF]. (4.24)

Note now that the last term in (4.24), which is being acted by
the operator of covariant differentiation, can be expressed as
Fg, [1—(23))6B = zoJ, (4.25)

that is, 3 z&7 , such that mapping with J generates the
twist-tensor in # , given by the lefi-hand side of (4.25).
Equivalently, we have

(FS [1—(23)18B)oF = z. (4.26)
Recalling (3.34), we can then write
C(12)[D(F 3 [1 — (23)]16B)oF]
=CA2V[(F [1 —(23)]6B)cF]
=Vo[F g [1—(23))6B)oF]. (4.27)
Hence
8(R;), = —2(Fo8JoF) @ [(14)R, | OF
+ [(123)(F°), (Fo),T.- ] g 6B
— Vo[(Fg[1 —(23)16B)cF]. (4.28)

The divergence term in (4.28) cannot be integrated out di-
rectly in the Lagrangian because it is a nonsymmetric con-
nection in the tangent bundle which allows for torsion. We
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can, nevertheless, decompose this term as follows'*:
Vo[(F & [1—(23)]6B)oF]
— Vo[(F 3[1 — (23)16B)oF]

— [C(23)T ]o[(Fg [1 — (23)16B)oF], (4.29)

S
where the part with the standard connection V does, in fact,

vanish upon integration and may, therefore, be neglected.
Rewriting the second term in (4.29) and substituting into
(4.28) leads to

8(Rs), = —2(Fo8JoF)? [(14R, ] @F
+ [(123)(Fc),(Fo), T ] éaB
+ [C(23)T, ] © [(F§ [1 —(23)]6B)oF].
(4.30)

To express this variation in terms of the variation of the
twistor connection, we make use of (4.8) and (4.9). Thus, we
obtain

8(R), =45M s {[(Fo(14)R, ) @ F]e(F40)]
— M & ([(Fo),(Fo),(13T.-] 2 A)
+6M 4 ([(CIT )

X ((24)[1 — (23)1FF)] 2 A). (4.31)

Because of (4.10), the variation M in {4.31) cannot be treat-
ed as completely arbitrary. In order to be able to do this, we
have to project the terms with which M is contracted onto
the same subspace in which 8M has values at each point

qe # . Consider a typical term in (4.31) which has the form

[] : SM. Projecting onto the subspace of M yields

B0+ @3]

+ [ 1l(aD)(aL),
+ (40),(a0)]

+3(0 1—23) [ 1)a0),(aT)} 4 8M, (4.32)
or, equivalently,
[ — T30+ 23N 1+ [ Di(aDy(al),
+ (40),(a0), ]
+4[ 1—(23) T IaO),(al);]} 44 [FosM].
(4.33)

If we now apply (4.33) to the first term in (4.31), take into
account IoL = O 4 L =0and OoL =1 4 L = O for twist-
tensors with values in %, and write symbolically R,

= xyAB (where x, y € 7, and A, B, € ) to stress the
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spaces of the files in a typical term of R, we get
45M < [(Fo(14)Rz) @ F]o(F 20)}
= —4[B(A 2 Fox)

X (Oa(Foy)al)] 44 (34)(FoéM). (4.34)
Observe that for any Ac#’, and Ce ¥,
A: C = (1aAal + O4ALO + I.ALO
+ 0aALl) 4 (TaCaO + 04Cal)
= (IaAaO + OaALL) £
X (IaCaO + OaCal)
= (1aA40) 2 (I.C.0)
+ (0aAal) 4 (OaCal)
= 2(0aAal) 4 (04Cal). (4.35)
Consequently, (4.34) becomes
46Mi{[(Fo(14)R, )PF] o(Fa0)}
= — 8{(IaBaO + O4B.I}OaAal) 4
(Oa(Fox)al)(Oa(Foy)al)}
44 (34)(FoéM)
= — 8{{13)(24)[1 — (34)}(Oa(Fox)al)
A (OaAal)
X (Oa(Foy)aI)OaBal) 44 (34)(FosM)}. (4.36)

The terms in (4.36) are all of the form (O aCal) with values in
Z, 8 . To convert to elements in 7, ® % ,, thus having

the usual isomorphism with Minkowski spacelo ' and also

preserving inner products, we have to make each term Ce &
correspond to y2i (0aCalle# g % ,. Consequently,
45Mi{[(Fo(14]R, |2F | o(F10)}
| = —2{(13)24)[ 1 — (34)](y2iOa(Fox)al)
22 (iOAAal)(FOy)AI)
(vV2i0aBal)] 44 (34)(FesM)
= 2{(13)(24}[1 — (34)]R} 44 (34)(Fo6M), (4.37)

where R is the spinor equivalent of the Ricci tensor fora U*
space (torsion allowed). Following Witten'” and Penrose,*
we have for this case'®

R= —1(23)0LR ), + (23)0(C(23)A]

+(23) [C(23)A]I + 2(14)G. (4.38)
Here (R ),= — [(23)OI] 44 R is the usual curvature scalar,
A =11 —(13)(24)]B, (4.39a)

B = (12)B = (34)B = 1C(13;57)%#
(Z€ spinor equivalent of curvature tensor), (4.390)
G=}[C+C'], (4.39¢)
= (12)C = (34)C = 1C(13;68)#, (4.39d)

and

(12)C(23)A = C(23)A. (4.3%¢)
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Applying similar arguments to the other two terms in (4.31),
we find

— ML ([(Fo),(Fo),(13T,- ] & A)
= — (AB([1 - (12](13)24[C (13]
+ C24]IT] 22 (FosM)

and

(4.40)

6M & ([(C(IT)e(24)[1 - (23)]FF)] . A)
= —i/V2[1 — (12))(13)24)[([(13) — (23)]O
+ [(14) — 24)1)C (35;46)T] 2% (FobM),

where
T= —(13)24T = —§(23)[0OC(13)T

+ (35)(46)(34) (C(13)T)1]

(4.41)

(4.42)
is the spinor equivalent of the torsion tensor.
Combining (4.37), (4.40), and (4.41) yields
8(Rs), = {[1-(12)](13)24)(2R
— [2p2}c(13) + ce4IT
— Li2](1(13) - 23)10
+ [(14) — (24)]1)C (35;46)T)}
(34)Fo5M . (4.43)
Next we evaluate the variation of the volume element in
(4.16). First note that (4.17) may be written as
dp =dQ ;; [(Jo)(Joh{Jo)s(Je)N]
=dQ ;I (4.44)
where
= (Jo),(Jo)(Jo)s(Jo)sN.
Varying (4.45) gives
o = [(5J®)1(J®)2(J®)3(J®)4
+ (Jo)(8doh(Je)de), + -+ IN
= [(6JoF°),{Jo),(Jo)Jo)sJo)s + N
— | 3 630l | = 630R, I,

k=1

(4.45)

(4.46)

where the scalar invariant (§JoF), is here defined by
(8JcF), = C(12)(6JoF) = F° 8J. (4.47)

If we now vary (4.44) and make use of (4.46) and (4.47), we
immediately get

Sdp=dQ 3 8T =F & 6 dp, (4.48)
or, taking into account (4.9),
8dp = —2(Fa0)iéM dp. (4.49)
A

Again, in order to be able to treat 5M arbitrarily, we need to
project into the appropriate space. Thus, applying (4.33), we
obtain after some straightforward operations

5dp =2[(JoF)a0] 42 (FosM) dp
=2[15a0] 22 (FosM) dp. (4.50)
Moreover, recalling (A27) and subtracting the projection op-
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erator into the space spanned by I and O, we can write
I- =1A—-1Is0—-10¢l
=JINO)—-1I80 —108I

= —1[23) + (24)]I2 O + O 1) (4.51)
Consequently, (4.50) becomes
6dp =([1-~(12)}(23)0I) 24 [(34)Fo5M] dp. (4.52)

Finally, making use of (3.65), (4.43), and (4.52) in the vari-
ation of (4.16) leads to the field equations

3 6L, 1 .. .
(34)J M2k [1—(12))(13)(24){4(23)OK(R ),

1 2(23)(0[C(23)A]

+ [ C23)A11) + 4(14)G

— [i{12)/2][C(13) + C24)]T
— [i12)42]([(13) — (23)1O

+ [(14) — (24)]1)C (35;46)T}

-8
= — (34)Fo Lo ,
M

(4.53)

where 8L,/6M and 8L, /5M stand symbolically for the
variation of the free field and matter Lagrangians minimally
coupled to the gauge fields (connections).

Projecting (4.53) from the left with (Oa),(Ia), and from
the right with (aI),(a0), results in

IR ), (23)0I — 2[(23)0C(23)A
+ (23){ C(23)A)] — 2(14)G]
= + 2k (13)(24)%,

where

(4.54)

~ 6L,
(OA)l(IA)z[ — (34)Je ](AI)I(AO)zE(U)(Z"r)2
SM
(4.55)
and X is related to the asymmetric total energy-momentum
of the matter field.!

Taking the symmetric and antisymmetric part of (4.54),
gives

IR ), (23)01 + 4{14)G =k [1 + (13)(24)]12 (4.56)
and
2[(23)O0(C(23)A)

+(23) CIAN] = & [1 — (13)24)]%, (4.57)

respectively.
Now consider the projection from the right of (4.53)
with [(aI),(al}, 4 (aO},(40),]. We get

— (i/42)(13)24)[C (13) + C (24)]T
— (i/42[(13) — (14)][C (35;46)T]O
— (i/2)[(23) — (24)][C (35;46)T1L

~ 8L,
=2k (oA),(IA)Q[ — (34— ]
X [(‘I)I(AI)Z + (‘0)1(‘0)2]
= — (ik /\2)[C (35) + C (46))r, (4.58)

where 7 is related to the spin angular momentum of the mat-
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ter field.

Equation (4.58) may be simplified further by making
use of the unique torsion decomposition which we derived in
a previous paper' [cf. Eq. (37) therein):

T=[1—(13)24)){ — 2[6 + i(24)c](23)01

+ (45)(12)HI — (36)HO}. (4.59)

Substituting (4.59) into (4.58) yields
2[(13) — (14)][lio — 26)0O]

+ 2[(23) — (24)][(ic — 20)I] + 2H + 2(12)H

= k[C(35) + C(46)]r. (4.60)
Contracting on (14) files in the above equation gives

— 6(12)(ic — 20} = k£ [C (14;35) + C(15;46)], (4.61)
and, contracting on (24) files in (4.60), we get

— 6(io — 20) = k [C (24;35) + C(25;46)}~. (4.62)

To obtain separate equations for o and 0, we take the com-
plex conjugate of (4.61) and make use of the Hermitian prop-
erty o = o', 8 = 0%, It then follows that

6lic + 20) = kK [C(14;35) 4 C(15;46)]7. (4.63)
Adding and subtracting (4.62} and (4.63) yields
0 = (k /24){[C(14;35) + C(15;46)]7
+ [C(24;35) + C(25;46)]7} (4.64)
and
o= — (ik /12){[C(14;35) 4+ C(15;46)]7
— [C(24;35) + C(25;46)]7}, (4.65)

respectively.

Inserting (4.64) and (4.65) into (4.60) and projecting
with I and O, we get corresponding equations for H and H.
The physical interpretation of these results and the applica-
tion to specific matter fields will be the subject of a forthcom-

ing paper.
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APPENDIX: SUMMARY OF TWISTOR ALGEBRA

Twistor space % =% , , is a four-dimensional complex
vector space with a Hermitian-type inner product (s|t), an-
tilinear in s€% and linear in te%, having the signature
(+ 4+ — —). Thedual twistor space %'=%3, is the set of
linear functionals on % ; thus each element k'e %’ acts on
each element €% to produce a complex number, denoted
k'cl or Iok’.

The symbol © will also denote contraction operations
(inner multiplication) between twist-tensors; for example,
MeoK’, M: K, Mi. K, KoM, K'M, K':; M, etc., for M
€% ®*"and K' € %' ®*. The number of circles © is the number
¢ of contractions performed, and m>c¢, k>c. The case with
M followed by K’ with ¢ circles in between indicates the
contractions of the last ¢ files of M with the first ¢ files of K’
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in sequence, e.g., M; K’ has the second to last file of M con-
tracted with the first file of K’ and the last file of M contract-
ed with the second file of K'. Similarly, K’ followed by M
with ¢ circles is defined. The above definition also applies to
other cases, for example, BoC, where Be% ® %' and
Ce% ® %' or Ce%.

Conjugation operations: The conjugation operation
le% —le%" is an antilinear map defined by the equation

fom = (Ijm)* (Al)
for allme % . Animportant property, which follows from the
Hermiticity of the inner product, is

lom = (lori)*, (A2)
where * denotes complex conjugation of a complex number.

The conjugation operation Be% ®—Be%'*?is an an-
tilinear map defined by the equation

B Im = (B :lm* (A3)
for all l,m € %, where the notation B ;s't’ and C’ ; Im de-
notes the action of Be% ®? as a bilinear functional ons’, t' €

%' and the action of C'e%'®? on 1, me% . Some important
properties which follow from (A3) are

lem) =1em, (A4)
B:A=(BIAP, (A5)
(Bol)” = Bol, (A6)

forl, me % and A, B €% *?, where the notation B =B and
I =1 was used for convenience. We also have the result

Be% "=Be%'"?,

where % "? and %'"? are the subspaces of antisymmetric
twist-tensors in % ®? and %’ ®? respectively.

The conjugation operation can be readily generalized to
higher order twist-tensor spaces; for example,
Me% **Me%’ ** is defined by the equation

M 2 Impr = (M 2 Ip)* (A7)

L Y R ]

for all I, m, p, r € %, where the notation M 22 s't'u’v’ and
K’ ;. Impr denotes the action of Me% ®*on s/, t', w’, ve%'
and the action of K'e%’**onl, m, p, r, €%. The properties
(Ad), (AS), (A6) can be then extended as follows:

lemeres) =lemsfss, (A8)
(AeB) =A®B, (A9)
M2 N=M: Ny, (A10)
M:B) =M B (A11)

forl,m,r,s,e% and A, Be% ®*%>and M, Ne % ®*, Note also
that

Me% M—=Me% ' M

Me% "o UM =oMe%' g %' M2
Duals of antisymmetric twist-tensors: Assume that we

have a given privileged element Ac% ™* satisfying the re-
quirement

A A=4. {A12)
Since the subspace % ** has dimension one, it follows that

any element of % "* satisfying the requirement (A12) must
be of the form e*?A for some angle ¢. Let A’e %' * be defined
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as A’=A. Now let (%, A) denote the space % with the ele-
ment Ae% "* given as a part of the structure. From now on
we shall abbreviate this notation with the symbol %, i.e.,
Y=(%, A).

The operations of forming the dual, Be% *?
—*Be%'"* and Ce%’'"*—>*C'c% "? are defined by the
equations

*B=1A'] B, (A13)

*C'=1AC. (A14)
Some properties of this operation are

*+B =B, (A15)

»C = (A16)

*A.B=A] +B, (A17)
for A, Be% "?and C'e %'"2.

The double dual operations M e % "2 @ % "? — «M»

€% e U andKe U @ U +K*e UM ®
% "? are defined by
M+ =AM A, (A18)
*K*=1AK:A (A19)
Inner product in % "*. The inner product A, Be % "?

—AeB € C, where C is the complex number system, is a
bilinear, symmetric map defined by the equation

AcB =1AC A’ B (A20)
It follows from (A 20} that

AcB=+*A;B=A: *B, (A21)

AAB = }(AcBJA, (A22)
where A A B is defined as

AAB = (A23)

i>'sgn(P)P(A & B).

The sum in {A23) goes over all permutations P acting on the
four files of the tensor A ® B; sgn (P) = 1 if P is even, and
sgn(P)= — 1if Pis odd.

Related to this inner product are the following tensor
contraction operations:

Me% "o %", Be%"*->MgBe% "2,
Be% "2, Me% e % "*>BoMe% "2,
M\Ne% "*® % "*->MeNe% "*@ % "2,
These are defined by
McB =iM; A’ B,
BoM =1B; A’ ; M,
MeN =IM; A’ N.
It follows from (A24) and (A 15) that
1AcB =1BoA =B (A27)

for all Be % "2, s0 JA acts as an identity operator on % "2 via
the @ inner product.

Definition: Be% "* is null iff BoB = 0.

Simple elements of % "* and %'"* A twist-tensor
Be% "?is simple if it has the form B = 1 Am, where |, me% .
Similarly, C'e%'"? is simple if it has the form C' = p' Aq’,

(A24)
(A25)
(A26)
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wherep',q' € %',
We construct the subspace .’ (B) of % and the subspace
F'C)of %' as
J(B) = {Bon'|n'e %'}, (A28)
SC) = {Clor|re% |. (A29)

Relevant to some of the subsequent discussion are the
following easily proved theorems about simple twist-tensors:

Theorem A.1: If B#0 and B =1Am (i.e., B is simple),
then I, m is a basis for 5 (B). Similarly, if C' 0’ and
C' =p'A(q' (i.e., C issimple), then p’, q’ is a basis for .#'(C').

Theorem A.2: B is simple and not 0iff *(B) has dimen-
sion 2. Similarly, C' is simple and not 0" iff #'(C’) has dimen-
sion 2.

Theorem A.3: B is simple iff *B is simple. Also B5£0 iff
*B+£0".

Theorem A.4: Suppose B is simple. Then .*’(B) and
' (*B) are perpendicular, i.e., 1oq’ = 0 for all l.#(B) and
all '’ (*B).

Theorem A.5: B is simple iff Bo*B = 0.

Theorem A.6: B is simple iff B is null.

Theorem A.7: Suppose A0 and B#0c% "? are sim-
ple. Then AoB#0iff % = ¥ (A) s 7 (B).

Theorem A.8: Suppose A0 and B#0e% "2 are sim-
ple. Then % = #(A)e #(B)iff Z' = .’ (*A)e 7'(*B).

Projection operators: Let A, Be% "% Then Ao*B maps
% into % by the operation (Ao*B)ol for le % . The range
% (Ao+*B) of this map is a subspace of % defined as

(Ao*B) = {Ao*Bom|me% {. (A30)

Theorem A.9: Suppose A0 and B0 are simple and
that AoB#0. Then (A) = #(A°*B) and
F(B) = #(Bo*A).

Theorem A.10: Suppose A#0and B#0 are simple, and
that AcB = 2. Then S, = — A°o*B and S = — Bo*A are
mutually orthogonal projection operators onto .¥(A) and
5 (B), respectively.

According to this theorem, we have

S,08, =5,, (A31la)
SgoSy = Sg, (A31b)
§,08g =S50S, =0, (A3lc)
leZ(A)=S, 01 =1, (A31d)
le#(B)=Sgel =1, {A3le)
le/(A)=Sg 0l =0, (A31f)
le(B)>S,°1=0. (A3lg)
Note that .S, + Sy is the unit operator on %, i.e.,
Sy +Sglel=1 (A32)
for all le % .

Real twist-tensors: A twist-tensor Be % "? is real iff

+B = B. Also, Me% "2 & % "?is real iff *M »= M. In parti-
cular, it follows from (A15) that A is real.

Let #=%,, = [P|Pc% "? P real]. Then & is a vec-
tor space over the reals. The inner product @ in € has signa-
ture (+ + — — — —).

Correspondence with Minkowski space: The infinity
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twist-tensor Ie € is a given privileged element such that 10,
and Ieol = 0. The space (%, A, I), which has I as part of the
structure, has the property that the group of linear transfor-
mations on it that preserves its structure is a faithful repre-
sentation of the Poincaré group &.

The set # = [P|Pe&, PoP =0, IoP =2} is a hy-
persurfacein & which has a one-to-one correspondence with
the elements of Minkowski space—time. This hypersurface is
invariant under the action of 2.

The tangent space % p at a given element Pe %" is the
set of elements Te& which are tangent to the hypersurface
% at P. It follows that % p = {T|Te&, IoT =0,
PoT = 0}. The inner product o in %7 is the Minkowski
inner product with signature ( + — — — ). This inner pro-
duct makes # a pseudo-Riemannian space. The standard
connection on # leads to a curvature tensor that is zero
everywhere on 7. Thus % is intrinsically a flat space.

The origin twist-tensor Qe¥~ (note, therefore, that
060 = 0and IoO = 2)is any chosen element of % regard-
ed as a reference point. The space (%,A,I,0) has the proper-
ty that the group of linear transformations on it that pre-
serves its structure is a faithful representation of the Lorentz
group. The structure of this space leads uniquely to a bilinear
antisymmetric inner product on %, an adjoint operation on
% , and a unique decomposition % = #(I) & (0}, which
serve to relate twistors to the Dirac bispinor space.

Inner product on(%, A, 1, O): First note that by
Theorem A7 the subspaces #(I) and .%°(O) have the proper-
ty that = #({I)® #(0). Also, by Theorem A0, S,

= —TIox0Qand S, = — O°*I are mutually orthogonal
projection operators onto the subspaces . (I) and . (O), re-
spectively.

The inner product I, me % —lameC is a bilinear, anti-

symmetric map defined by the equation
lam = — Io(*I 4+ *O)om. (A33)

Related to this inner product are the following tensor
contraction operations:

Be% ¢2, le% —>Bale%,
le%, Be% ®*->1aBe%,
A ®2, Be% ®** >A Be% ®2

These are defined by the equations

Bal = — Bo(+I 4+ *O)ol, (A34)
1aB = — Io(*I 4 *O)°B, (A35)
AaB = — Ao(*I + +O)°B. (A36)
It also follows directly from (A33}—-(A36) that
ma(Bal) = (maB)al, (A37)
(AaB)al = Aa(Bal), (A38)
Aal = — LA, (A39)
(AaB)” = — BaA (A40)

forl, me % and A, Be% 2.
As a consequence of Theorems AS and A 10, we have
Theorem A.11: Acting via the a inner product, I and O
are mutually orthogonal projection operators onto . (I) and
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F(0), respectively.

Thus, according to this theorem, we have

LI=1 (Adla)
0.0=0, (A41b)
1.0 = 0.l =0, (Adlc)
le#(Ijeslal =1, (A41d)
1e.#(0)>0al =1, (Adle)
le.#(Ix>0al =0, (A41f)
1e.#(0)=1al = 0. (Adlg)

Note that I + O, acting via the a inner product, is the unit
operator on %, i.e.,
I+ Olal =],

for all le % .
The basic properties of this inner product are

(A42)

lam is bilinear in 1, me %,
lam = —malforalll, me% (antisymmetry),
1, m independent elements of 5 (I}=>1am #0,

1, m independent elements of #{0)=>lamz£0,
le #(I) and me.¥ (O)=lam = 0,

L meS(=1Am = — (lam)l,

1, me#(O=1Am= — (lam)O.

As a natural extension of (A33} we define the double
product 4, or double contraction with the a product, T,
We% ®>>T 4 WeC as a bilinear, symmetric map given by
the equation

TAW = [To(+I + *0)] ; [(I + *O)oW]

= — [(*I + *O)°To(xI + *0)] ; W. (A43)
An important property, which follows from (A43), is
(lem) 4 (r®s)= (lar)imas) (Ad4)

forl,m, r, se%.

Making use of some of our previous results, we can re-
late the 4 and o products in % "? by

Theorem A.12: For T, We % "\?

T 2 W =1ITo(I + O)I + O)oW — TeW. (A45)
As a consequence of this theorem, we have
I£41I=040=2, (A46)
I20=041=0. (A47)
It also follows from (A45) that for Te% /2
I4 T=0¢T, (A48)
042 T=IT. (A49)
Hence, Te# <14 T=04 T=0.
Furthermore, for T, We ¥, we have
TAW= —TeW. (A50)

Equations (A48) and (A49) allow us to invert (A45) to obtain
an expression for the @ in terms of the 4 product:

ToW=IT2 I+ O0)I+O0)4 W—_T4 W. (A5])
Adjoint operation: We shall make use of the fact that the
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quantity

SI +So = — (IO’O + OO*I]
= (I— Op(*] — +0) = — (I + Op(+I + +O)

(AS52)
is the unit operator on %, and
S, + Sy = — (*Ocl + *I00)
= (*I — *Q)o(I — O) = — (*I + *O)o(I + O)
{AS53)

is the unit operator on %', acting by the © operation in both
cases.

The adjoint operation le% —le% is an antilinear map
defined by the equation

I=Io(I — 0)= — (I — O)el. (A54)
It follows from (A52) and (A53) that
i=To(*I — *0) = — (*I — *O)oL. (AS5)

Similarly, we define the adjoint operation Be % ®2>—Be% ®?
as the antilinear map given by the equation

B= — (I — O)oBo(I — O). (A56)
From this we obtain
B= — (*I — »O)oBo(*I — +O). (A57)

Some basic properties of the adjoint operation are
le% —e% le % —le%

1=1 foralile%, (lam)*=T.m foralll, me %,

2= (0), e (0=l (1),

I=0, O0=],

1aBam = (IaBam)*, Bal = B.l,

B=B, forBe%°2and], me%. (AS8)

The adjoint operation can be readill extended to higher or-
der twist tensors. Thus Me% ®*>Me% ®* is defined by

is one-to-one, is antilinear,

M = M{o(I — O)],[o(I — O)L,[o(I — O},[o(I — O}],,

(A59)

where [¢(I — O)], fork =1, 2, 3, 4 are li/r\lear operators
acting to the left on the & th twistor file of M numbered from
right to left (in analogy to the notation introduced in I).

Theorem A.13: The adjoint of BEZ (real twist-tensor) is
related to B by

B=1.BaO + O.B.l +}Iec0+0s1)4 B

= —}[I-0)e(I-0)] 2 B+B. (A60)

Thus, if Be # ", it follows directly that

B=B. (A61)

Relation to the Dirac bispinor space: The space (%, A, 1,
O) with the bilinear inner product lam and the adjoint oper-
ation 1, together with the given decomposition
% =S85, where ¥ ,=5(Ij and #,=.7(0), is iso-
morphic to the Dirac bispinor space. However, the Hermi-
tian type inner product

(fjm) = —ilam (A62)
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is also occasionally used for Dirac spinors instead of (Ijm).
The latter can be reexpressed by means of the operations of
the Dirac bispinor space as

(1lm) =1a(I, — I,)am,

where, =Iand I, = O.

Minkowski 4-vector space, as it is usually constructed
from Dirac spin-tensors, is the subspace 7, ® ,; %, of Her-
mitian spin-tensors in £, ® %,. Here, Ae.#, ® .%, is called
Hermitian iff A = A. If we antisymmetrize the elements of
Ly %, we get a subspace 7, A &, of antisymmetric
Hermitian tensors. This subspace coincides with i % g, the
space obtained by multiplying each element of %, by i. The
elements of 1% o are pure imaginary with respect to the
definition *A = A of reality for A% "*. The inner product
©ini¥ g hassignature (+ + + — ). Also
AcB= — A4 BforA,Bin ¥, andi¥% .

In order to construct a basis for i%# g, leth,, h, be a
basis for #, such that h,ah, = 1. Then h,., h,., is a basis for
%, with h,. ah,. = 1. We can therefore write

(A63)

T, = y(h; Ah, +hy, Ah,), (A64a)
T,= —i(h, Ah, +hy, Ah,), (A64b)
T, = — li(h;, Ah, —h, Ah,), (A64c)
T, = — (b, Ah, —h, Ah,), (A64d)

which constitute an orthonormal basis for i %", satisfying
the relations T, T, = g,,,, where g, = 0 for u#v and

811 =82 =83 = —8oo = 1.ThesetiT, forp =0,1,2,3is
a basis for # . Including two more independent elements,
for example, 4(I + O) and 4(I — O), together with the i/ T,
(e =0, 1, 2, 3), gives an orthogonal basis for & .
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Properties of Mayer cluster expansion
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The Umbral algebra developed by Rota and his co-workers is used to show that the Mayer cluster
expansion of the canonical partition function is related to the Bell polynomials. The algebra is also
used to find a representation of the partition function and a rederivation of Mayer’s first theorem.
Finally, it is shown that in the *“tree approximation” for the cluster integrals, the summation of
Mayer’s expression for the canonical-ensemble partition function for a finite number of particles
could be performed using Dénes’ and Rényi’s theorems in graph theory.

PACS numbers: 05.20.Gg, 02.30. +- g

INTRODUCTION

This article shows that the Umbral algebra developed
by Rota and his collaborators'-? can be used to shed light on
properties of the Mayer® cluster expansion of the canonical
partition function. Recently Gibbs, Bagchi, and Mohanty
(GBM) and Donoghue and Gibbs* were successful in deve-
loping a theory of vapor condensation along the lines set
forth by Mayer several decades ago. The results of GBM
motivated this work.

This article is organized as follows. The Mayer equa-
tions are briefly reviewed. Then the Umbral algebra 1s intro-
duced. This algebra is used to derive a recursion formula for
the cluster expansion of the partition function. For volume
independent cluster integrals, the cluster expansion of the
partition function is shown to be expressible in terms of 4 ~ !
where 4 is an invertible shift invariant operator, and powers
of volume V. Finally, it is pointed out that in the tree approx-
imation for the cluster integrals b,, the complete summation
of the Mayer’s expression for the canonical-ensemble parti-
tion function for a finite number of particles, could be per-
formed with the aid of some theorems in graph theory.

MAYER EQUATIONS

Consider a classical system consisting of NV particles en-
closedin a volume V. Let the temperature of the system be 7.
The configuration partition function for the system is given
by

Zy(T, V)= 1—\1,—' ff W (F1yenosToy )T edi (1)

The quantity W (r,, ..., ry) is defined as

e~ Vi rN]/kBT, 2)

where V (r,,...,r ) is the interaction energy between the parti-
cles, and k, is the Boltzmann constant.
A set of cluster functions U {r,}, U,(r,, r;),..., is intro-

duced by the equations

Wir)=Ur)=1,

Wir, r)=U(1,2)+ U(1U(2)

=U,(ry, 1a) + Uy(r,}U(ry),
Wilr,r, 1) =U(L, 2, 3)+ UL 2U3)+ U(2, 3)U(1)

+ UGB, JU@2)+ UMURU(3). (3)

The total number of terms in U, is
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(/20— 1)
Cl{lLk)
k=1
where C (I, k ) is the number of connected graphs of / labelled
points and k lines. The jth connected cluster integral
b,(T, V) is defined® in terms of the cluster function U, as

Vilb(T, V)= JJ U(1,2,...jdr,dr,. (4)

The left-hand side of the above equation denotes the sum
over the “weights” of all connected graphs of j labelled
vertices.

What Mayer® showed is that the partition function is
expressible directly in terms of the connected cluster
integrals

X (VBT V™ _ Qu(T V)

Z, (T, V)=
o ! l;ﬂ =1 m;! N
z Imy=N
(5)
The grand partition function is defined in terms of
On(T, V) as follows:
i T,V

E(T, V,Z): Z _QN_(_.___)ZN’ (6)

No M

where z is the fugacity of the system. The generating function
of the grand canonical partition function is given by

© 0 !
3 V) exp[V S 11T, V)Z_]. (7a)
o N! =1 I
That the above expression holds over a very wide class of
weight functions is known as Mayer’s First Theorem.® To be
precise, let G (V) be a graph with NV labelled points and let
WG (N )) be the weight associated with graph G (V). Let the
weights have the properties that (a) W[G (N )) depends on the
topology of G (N ), but not on the labelling of the points, and
(b) WG (N)) = IWC (1)), wherethe product goesover all dis-
jointconnected graphs C (/ )of G (N ). Then, Eq. (7a)continues
to hold if one makes the replacement

VILb(T, V)= 3 WIC(),
(Tb)

&, s mew))

N! G(N)
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UMBRAL ALGEBRA

Let B denote the commutative algebra of all polynomi-
als in a single variable x with coefficients in a field of charac-
teristic zero. Let B * be the vector space of all linear functions
of B. Denote the action of a linear functional L on a polyno-
mial g(x) by (L |¢(x}). The vector space B * is made into an
algebra by defining the product of two linear functionals L
and M as

n

waley = 3 (0) (L ey, )

k=0
The identity for the product defined above is given by the
action of the linear function w. on g(x),

(@ |q(x)) = glc), )
where c is an arbitrary constant.

The vector space of linear functions B * with the above
product and identity is called the Umbral algebra.’

A delta functional is a linear functional L with the prop-
ertythat (L |1) = Oand (L |x) 0. A polynomial sequenceis
a sequence of polynomials ¢, (x), n = 0,1,2,..., where g, (x) is
exactly of degree n for all n. However, a sequence of polyno-
mials p,, (x) is of binomial type if it satisfies the identity

n

peta=3 (7) pulap, o)

k=0

(10)

Polx) = 1.
A polynomial sequence g, (x) is the associated sequence for a
delta functional L if

(L¥|g,(x)) =n'b,, Vn, k>0. (11)

The product of any number of linear functionals can be
computed by using sequences of binomial type, in place of x”.
We have the following proposition®:

Proposition I:1f q,, (x) is a sequence of binomial type, and
if L,,L,,...,.L, are linear functionals, then

(LI’LZ""va |qn (X))

n
- 3 (") ) wig gm0
k Jises Jk
Igljl ="

One of the key properties of the product of linear functions
follows from Proposition 1. If

(L{1) =(L|x) =~ =(L[x"~") =0, (13)
then (L *|x") = O for n < km and (L *|x*") = (km)!/
(m)* (L |x™)*
BELL POLYNOMIALS AND RECURSION RELATION

Now, we have all the tools necessary to study the alge-
braic structure of the Bell recursion formula and many of its
properties. Over a field of characteristic zero define the gen-
eric delta functional L by

(L|x"y=x,, n»l
(14)

(L |1y =0.

The conjugate polynomials for the generic delta functional
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are the Bell polynomials®
Y, 06 Xy, Xpe0X,) = 3 B, Xk, (15)
k=0

The coefficients of x* in (15) follow from Proposition 1:

(L*|x") “ (xj)m’ 1
B ,=—"—-=n! -] —. (16)
. k! l;ﬂ jl:_I1 j! mj!

Z jm;=n
Im=kK

From (16} one can see that

n X\ 1
Y (L, x4, X5,..00x,) = n! (——j—) —_—
i;ﬂ jHl j! mj!
2 jm;=n
=Y, (X, Xp5eees X ) (17)

A comparison of (17) with (1) shows that the partition func-
tion Q, (7T, V') for a system of N particles enclosed in a vol-
ume ¥V and at a temperature 7 is related to the N th Bell
polynomial

On(T, V) = Yy(11VB,, 2¥b,,...N! Vb,). (18)

An equivalent representation of Y, is given by

Y, (10 8,) = e L s — g~ 6D 7ex, (19)
dx”"
From (19) it is a simple exercise to show that ¥, |
(815---8, , 1 ) satisfies the recursion formula
no(n
Yn+ l(gl""’gn+ )= z (k) Y, _(81s8n —k)gk+ - (20)
k=0
On combining Egs. (18} with (20) one gets a useful recursion
formula for the partition function,

Ov TV

Ov i LV) X (k+1
( (N—k)!

(N + 1)t zkgo N+l) MooV
(21)

The generating function B (¢ ) of the Bell Polynomials is
defined as

= Y
Bit)= Y ' " (22)

n=0

By the use of Eq. {17), one can show that

“ X,

InBt) nz] o t". (23)
Since Q,,(T, V) = Y,(11¥b,,...,n'Vb, ), Eq. (23) leads us to
Mayer’s First Theorem. In the Appendix we will give a dif-
ferent proof of this theorem.

A REPRESENTATION FOR THE PARTITION FUNCTION

Every linear functional L defines a multiplication oper-
ator @ (L )* on B *. The operator 8 (L )* maps the linear func-
tional M to the linear functional L as 6 (L }*M = L-M. (L)
is called a shift invariant operator.

A delta operator is defined as an operator of the form
P = 0(L), where L is a delta functional. This operator has
many of the properties of the derivative operator. For in-
stance, Pa = 0O for every constant a.
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The generalization of the relationship between the deri-
vative operator D and the sequence g, (x) = x, is that
between a delta operator and its associated sequence ¢, (x).
We now state a powerful theorem—the so-called Transfer
formula! that enables one to compute the associated se-
quence for a delta operator.

Theorem 1: If P = AD is a delta operator, where 4 is an
invertible shift invariant operator, and if ¢, (x) is the associat-
ed sequence of polynomials for P, then

g.[x)=P'A """ x", V¥n»(, (24)
where P’ is the Pincherle derivative' of the operator P.

Corollary I: If P = AD is a delta operator with associat-
ed sequence g, (x), then
Vn>1. (25)
The proof® of this corollary follows from Theorem 1. By
definition one has

P/A —n-lxn__(A +DAI)A ——n—lxn

=4 " "x"+nd'Ad """ x" (26)

The above equation can be further simplified by recalling the
Pincherle derivative' of (4 ~"7),

A" — (A" "X—X4 """~ '=x4 ""x " L(27)

This completes the proof. Note that in Eq. (27), X is the
multiplicative operator. Thus X: p(x}—xp{x).

We can now make the connection with the partition
function Q (T, V). Let Q(T, V') be a sequence of basic poly-
nomials for a shift-invariant delta operator P. The delta op-
erator is determined by b,(T'); in fact, P = (d /dV )4, where 4
is invertible. Then, Theorem 1 and Corollary 1 allow us to
express Q, in terms of 4 ' and powers of V:

OnT, V)=V4 —"yN-1L (28)

PARTITION FUNCTION IN CAYLEY TREE
APPROXIMATION

In the Cayley Tree approximation, the connected clus-
ter integrals are given in terms of the first irreducible star
integrals 3,(T) as*

11—2

g, (x)=x4 ""x""",

b(T)=——B1"(T) (29)

The conﬁguratlon partition function (5) then becomes

11—2 m, l
(T, V)=N! Vai-ym .
On ) gg:'; 11:‘[1( A ( ) m,!
zl:lm,=N
(30)
We can rewrite Eq. (30) as
on(T, V)
_ N K M N N Ji=2\y 1 ‘
-2 e 2 ()
= (31a)
N V M N
EME;’I(B_) B1Gy(N). (31b)
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The last equation defines G, (V). The quantity G,,{¥ ) can
be interpreted as the number of all graphs with NV labelled
vertices consisting of M disjoint trees. This was first proven
by Dénes.” However, Rényi® showed that G,,(N ) can be ex-
pressed in a simpler form,

GulN) (—_) (M)(M+]— )NN—M*j(M+J')!.

(32)

The main advantage® of Eq. (32) is that it provides a simple
way to numerically evaluate the partition function. How-
ever, if higher order star integrals are used to approximate
b,, then the recursion formula (21) is indispensible in per-
forming a complete summation of the canonical ensemble
partition function.

uMg

L
MI,

CONCLUDING REMARKS

Bell polynomials are related to the Mayer cluster ex-
pansion of the canonical partition function. This observation
results in a recursion formula for the partition function. The
recursion formula was used by Gibbs, Bagchi, and Mo-
hanty*'° to develop a theory of vapor condensation.

For volume independent cluster integrals, the Umbral
algebra was exploited to show that the partition function
Qn(T, V) can be written in terms of an invertible shift invar-
iant operator and powers of volume V. Whether this repre-
sentation for the partition function is possible for volume
dependent cluster integrals needs further investigation.
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APPENDIX

In this Appendix we briefly outline a different proof of
the Mayer first theorem. The proof will be based on theo-
rems in Umbral algebra developed by Rota and
collaborators."?

Let us indicate that the shift invariant operator P corre-
sponds to the formal power series p(t ) under the isomorphism
theorem by P = p{Q). The isomorphism theorem states that
there exists an isomorphism from the ring of formal power
series in the variable # over the same field as the delta opera-
tor Q onto the ring of shift invariant operator, which carries

)=S0 a3 2gn (Al)

n>»0 A n>0 n!

n

Proposition 2: Let P be a delta operator with basic poly-
nomials ¢, (x), and let P = p(D ). Let p ~'(¢ ) be the inverse for-
mal power series. Then

» gn(x) i

n>0 n!

= eXp“(u)' (A2)
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Proof: Any shift invariant operator can be expanded in
terms of the delta operator' (Expansion Theorem). In parti-
cular, expand the translation operator E “ [ E *: E %g(x)

= g(x + a)] in terms of P as

E=Y g,(a)
n>0 n!
We can now use the isomorphism theorem with D as delta
operator to get

eat - "zo q"_’z(!a2 (P(t ))n‘ (A4)

Now set g = x and 4 = p(t) in the above equation.

Corollary 2: Given any sequence of constants «,, ,,
n=12,.., with a, , #0 there exists a unique sequence of
basic polynomials g, (x) such that

P (A3)

an,l = (x_ lqn (x))x =0
ie., (A5)

qn(x) = 2 an,kxk» n= 1’ 2’ N

k>1

Corollary 3: Let g(x) be the formal power series corre-
sponding to P in Corollary 2. Then g = f ~', where
t k

S)=73 a, & (A6)

k>1 k!

The preceding corollary gives an explicit interpretation to
the generating function of a sequence of basic polynomials,
which can be restated as
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n L
"= exp(x Y ;(—l) (A7)

S0 nl k>t

If one identifies ¢, (x) with Q@ (7, ¥}, x with ¥, and a; ,
with k!5, (T), then Eq. (A7) becomes Mayer’s first theorem.
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“The partition function as given by Eq. {31) can also be expressed as a
contour integral,

OITF)_ 3 v oy

(N1 = M)

« {_L ld/dZ)Z —\Z*)"]e ., '
2@ Je zy
where Cis a closed contour in the Z plane encircling and sufficiently close
toZ=0.
19U, Mohanty, A. Yang, and J. H. Gibbs (in preparation). In this work a
physical cluster theory of vapor condensation is developed.

Udayan Mohanty 1492



Continuity of sample paths and weak compactness of measures in Euclidean

field theory
Z. Haba

Institute of Theoretical Physics, University of Wroclaw, Wroclaw, Poland

(Received 5 September 1980; accepted for publication 15 May 1981)

Under an assumption on the asymptotic u— oo behavior of the generating functional

§ explug (g)] dulp ), an estimate is obtained on |y(x) — y(x')|, where y(x) = P¢(x)=¢ ( g(- — x}),
showing Holder continuity of @, (x) for a class of g. It is proved that the family of measures v,,,
with dv, (v) = du, (p,) and § expy (c) dv, (y) bounded in 7, is weakly conditionally compact.

In application to the infinite volume cutoff , measures in P (@), , these results imply the
continuity of 4, (C') when k— oo for a class of sets C. Such a property allows distinguishing the

interacting measure from the free ones.

PACS numbers: 11.10. — z

I. INTRODUCTION

It is of some importance to know the supports of mea-
sures we are dealing with in the Euclidean field theory."* In
Ref. 3 we have established some continuity properties of
@(6, f) for @ from the support of the Euclidean measure £ on

#'(R ¢)under some assumptions, which are fulfilled in P (¢ ),
and (¢*);. In this paper we prove more general results con-
cerning the continuity properties of ¢( g{- — x)) for a certain
class of g under much weaker assumptions. In fact, only the
asymptotic behavior of E [expug ( g)] for |u]|-— o isneeded as
a technical tool. The continuity properties of sample paths
depend then on the properties of the covariance.

Using our results on the continuity of sample paths and
the Prokhorov criterion* (concerning measures of certain
sets of continuous functions) for weak compactness of a fam-
ily {v, } of measures, we can give a criterion for weak com-
pactness involving only the properties of E [expug ( g)]. The
weak compactness allows one to determine the measure
v, (C) of a certain class of sets C if the measures v, (C) are
knownand ifv, —v_ inthe sense of convergence of the char-
acteristic functions. Finally, an application to the infinite
volume regularized P (@ ), theory is discussed. We consider
the infinite volume measures z, with an ultraviolet cutoff «
on the interaction. The measure &, on.#'(R ¢) induces a
measure v, with the support on C (R ¢) by means of the trans-
formation g(x)}—¢ ( g(- — x)). It is shown that if
E, [expy ( g)] are bounded in «, then the measures v, on
C (R %) are weakly compact with the usual topology on
C (R %) of almost uniform convergence. In an earlier paper’
we have extended some results of Rosen and Simon® on
the behavior of the sample paths (fluctuations) of ¢( g(- — x))
for x— o0 . We have found some sets in C (R ) describing the
fluctuations of ¢, which are closed in the topology of the
almost uniform convergence. Our results on weak compact-
ness imply now, that if the characteristic functions of z,
converge, then the measure of a closed set Cis 1ifv, (C) = 1.
This result means that some properties of the sample paths
distinguishing Gaussian and non-Gaussian random fields
are preserved under the limit x— co.

The weak convergence of measures on nuclear and
more general linear topological spaces is discussed in Refs. 7
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and 8. It is proved there that u, converge weakly, if the
characteristic functions converge. The topology in the space
of measures is then related (Ref. 8 in the Appendix) to the
topology of the set of the characteristic functions. However,
these general results cannot be directly applied to the sample
properties we are interested in. In order to get some conclu-
sions about the support of the limit measure u we need to
consider either closed or open subsets in the topology of %"
We were unable to describe fluctuations of @ in terms of such
sets.

Il. CONTINUITY OF SAMPLE PATHS OF EUCLIDEAN
RANDOM FIELDS

We begin with a generalized random field @ over the
test-function space #(R ¢).° In applications, it is often neces-
sary to enlarge the test-function space. The generalized ran-
dom field @ can be defined for a larger test-function space .#
if 3 f,—f in & implies that ¢ ( f,) is convergent in mea-
sure (see Ref. 10). We shall restrict ourselves to a subspace
L2 of F consisting of functions f'such that

fdammpww,

where o is the spectral function of the covariance,

(IL.1)

Elg(x eyl =Jd0(p) ey

We assume that the random field @ is transiation invarian:. If
ffulfills the condition (IL.1) and #3f,— f in L 2 then ¢ ( f)
can be defined as a limit of @ ( £, ) in the mean. As the random

field @(x) is translation invariant we may define the (random)
spectral measure  such that

ulx)=p (g —x)) = F (& p) €
- f ¢" duo,(p)

here @ means the Fourier transform. We shall also introduce
some auxiliary random fields #;(x) ,

¥;(x) =@ (& p) |p;|* )
= f e?|p;|* dwg( p) .

(I1.2)

(IL3)
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In Osterwalder—Schrader field theory'' do{ p) should have
the form

do(p)=dp | dpim)5——
g P+ m
[if p(m) grows as m? or faster some subtractions are needed in
this formula].
In our estimates on the sample paths we shall assume

(i) for a certain 0 < a < | there exists p > 1 such that
lim sup,,, ., |¢| ~” In|E [expulﬁj(O)]l <Mi(g).

If g€.%(R?) we assume, in addition to (i),

(ii) either do{ p) = d °p p( p) and |g( p)|* p( p)| £ |*
€L,nL, for certain 1 <¢<2,i=1,2,..dand @ <} — 1/2¢, or
&p)= flp,_,) [wherep, | =(p,,...,.ps)] With
ﬁey(R =), | f(pa_1 )|2P(P)| P1|°€L,, and my>0in Eq.

L3).

This section is mainly devoted to the proof of
Theorem IL.1. Assuming (i), and if g€ ¥ (R?) also (ii), we

have the following estimate { ¥ means *‘there exist x and x'
x, x’

such that”) with certain numerical constants K > Ko

PLV [ @) = @, x)[>R [M(g)]""] x — '}

N Bir. o) )
<R [K, +K, ; E [(m — (IL.4)

for | x|, |x'|<T and any o' <a, where
-
Bi(x) =J dsexp|r;(x; +5,%x,_,)?~ " (IL5)
- T

with certain r<(a( p)) " '(M (g)) ~ /#, where a( p) is a numeri-
cal constant. In particular there exists a random variable K ,-
finite almost surely (a.s.) such that

| @5 (X) — @, (x)|[<K7| x — x| (IL6)

with probability 1.

Remark: (1) Theorem 1 of my previous paper (Ref. 3) is
a special case of the present Theorem II.1 corresponding to
&(p)= f(p,_,) depending only on d — 1 momentap, ;.
We have proved this special case before under an additional
assumption on higher order moments (assumption d of Ref.
3). This assumption is not needed at all. We have used it only
in the proof of Lemma 5 of Ref. 3. We will prove this lemma
here (Lemma II.6) assuming only (i) and (ii).

(2) Let us note that the estimate (I1.6) is trivial if
g€ #R ) but (11.4) is not even in this case.

In terms of ¢,( x) [Eq. (I1.2)] we can now define the

stochastic process depending on x, _ |, = ( X5,...,x,;) as a
parameter,
W,(xdﬂ]=J:¢,(x,,x,,4)dx1 (I1.7)
and
§ilxy.q)= Msina% " s|*~ tem B
Xt — 5%y _ ,)d;” (11.8)

with O <y <& and yp > 1/2. These are the analogs of ¢’, and
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& 7 of Ref. 3. The only difference is that we replaced # of Ref.
3 by n?, which improves the convergence of € 7(x, _,}to
@ (t,x; ). We need several lemmas before we start the
proof of Theorem II.1.

Lemma I1.2. For any p > 1 there exists a constant b (a)
such that

exp|x|”¥ - ”<bJ_dy exp( — |y|?) expa|x|y, (1L.9)

l) R l/p.

where a<a({p) =p(p —
Proof: We write
— PP +plzly = —rly — vl +v”

+ 0P [r|l = p/vlf — [p/v]P — 1 + py/v],
(I1.10)

with v = |z|""¥ =1 For |y/v|>€ > 0 we can choose (ifp > 1) r
such that the expression in square brackets in (I1.10) will be
larger thanp — 2. Then, if {y/v| < € we may expand the func-
tion in the square brackets and show that it is not less than
p — 2. By exponentiation of such an inequality we get (I1.9).

Remark: For p<2 we could get a similar bound from
below in Eq. (I1.9) with different a and &.

Lemma I1.3. The integral (I1.5) exists a.s. and

E [B(x)] = E [B%(0)] <
if 7' >(M (g))"*a( p).

Proof: From Lemma II.2, assumption (i}, and transla-
tion invariance

E [exp|r¢g(xj + 8, Xy )|p/(p_ l)]
= E [exp|rg, (0)/* ~ V]

<b f dy expl — |y|°)E [expar|@,(0)]y]

<b [dy expl — I [explarg, (O]
+ E [exp( — arg, (Oly)]}
<C+ jl | dy exp( — |y|?) expM (g)|ary|(1 — €) < 0.

This is also sufficient for the integral (IL.5) to exist (Doob’s
theorem'?, Sec. II).

Lemma I1 4.
|ng,+h(xd——l)_ ng,(xd—l]l
B! (6 —Wp
<(M(g)) *alp)|h I(ln B|;(|X)>

for |4 | < T with probability 1.
Proof: For t,h >0 from the Jensen inequality,

F(%f ) h¢,(s)ds)<—hl—f i hF(¢|(s))ds<-}ll—f Y Eiods

for any convex function F. For F (x) = exp|x|”¥* Y, ¢, X
(IL.7), and B L(x) (I1.5) with r— (M (g))"* a(p), we get the ine-
quality in the Lemma {the case 7,h nonpositive can be treated
similarly).

Lemma I1.5. The inequality
€% cnlXa_1) = &5 (X )M ()7, (x,h) |1 |* (IL11)
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holds true with probability 1 for each x, _ | and
Ixids 12 <T,
where
— 1/
E [, (xh )]<(1nl2hT‘)’J ’

X (o + o E [(In(B 37, (00T 1)) V7)), (I112)

o, &, being some numerical constants. For each x, _,
there exists an a.s. finite radnom variable B(x, ,)such that

Br{x,_, ))p7 Ve
2T |h | ’
with .&/ independent of n.

Proof: By means of the integration by parts we can ex-
press £ 7 in terms of an integral over ¥, .. Next we use
Lemma I1.4 in order to estimate |¢,, ,_, — € ,_,| for
|s| <nP. Still, the integrals over s have to be estlmated. This
has been done in Ref. 3 (Lemma 4). It can be seen from the
calculations performed there that we may take as ./, (x,/ ) in
Eq. (I1.11) the following expression:

A uleh) = o (B (0%, )k |~
+ (I |h |~y — VP

nﬁ
+ C{"if dssa72+6efn rpgh
) 1

X{(lnﬁlr(x, —S,xdfl)lhl_')“"”/”
+ (lnﬁlr (x, +5%5 1) lh'Al)(p_Wp}

N &/4“1“B W, —nPxy

1) ] —We
Loodlxd+ n")lh |
+ [ln B y{x, +nfx, ] - Wp}.
(Ix:] + n?)| 7 |

In deriving (I1.14) we have decomposed the integration over
sintotheparts[ — 1,1], [ 1,n?][ — n?, — 1]. Thefirst termin
Eq. (I1.14) comes from the [ — 1, + 1] part. The last term
from the integral 71,(x, — s)ds. The estimate (I1.12) is a
consequence of Eq. {I.14) and the inequalities
@+ b )(p— ll/p<K(a(pv We 4 b~ ”/P)

for certain K. Next, the existence of B, (x, _ ) such that
(I1.13) holds true is a consequence of the ergodic theorem. To
see this let us consider

Bir)

t+ T
=f ds exp|ri,(s)|7v =Y
t— F

o, (x,h )@/(m (IL13)

(I1.14)

1 ol
T<B 2T 4 12

t+ T

t— T
<] dsexplryfs))e " +f ds exp|rip, (s)|7 — "
0 0

n+ T n_ T
<j ds exp|rz/;,(s)|”“’“’+J ds exp|ry,(s)je — "
0 o

fort>Tand n =[t] + 1([ ] means the integer part). From
the ergodic theorem,
n+ T

ds explri,(s)

’p/(p - 1)
n+TJ

is a.s. convergent as n— oo, hence a.s. bounded. The case

t < T can be treated similarly. So, B -(t,x, _,)(1 + |t ])~"is

bounded by certain a.s. finite random variable B }(x,_,).

Using this we can estimate the integral over s in Eq. (I1.14) by
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o [(lnB lr(xdfl)lh r—l)(p~ We 4 (In2T |A [~l)(p, ”/p]
<C,(InC\B L(x, )|k |~ ")e— Ve,

arriving finally at Eq. (I1.13) with certain B,

Lemma 11.6. Under the assumption (i) if 8€J AR ) and
also (ii) if g€ IR 9), £ (x,_ ) converges a.s. to @ (x,,Xy_,)
for each x, where ¢>(x) is a random field equivalent to @ (x).

Proof: x,; _, plays no role in the proof so we shall con-
ceal it. It is known that the condition

SarElE =<
n=1
for a sequence {a, }, such that 2=_ |, | < =, is sufficient

for a.s. convergence. In our case we have from the definition
(I1.8)

(IL15)

e —gr=K [ sl el — (4 1))
—exp[ — n =" |s]°),(t — s)ds

n+ 17
+KJ N s* 7 lexpl — (n + 1) = 7?s°19, (t — s)ds

(n+ 1)7
+ KJ s* " lexp[ — (n + 1) " 7s° 1y, (¢ + s)ds.

(IL.16)
Using |E [¢,(t — silr — 5')]|<E [#7(0)] we get

E [(J:"Jr 1V’s"‘ expl — (n + 1) = 7s°149,(t — s)ds)2]

4

<E [lﬂ%(o)]U(H " s*lexp[ —(n + 1)'7"S‘S]a's)2

<Cn** ~2exp[ — 2(n + 1)~ 7"n?]. (IL17)
Next,
expl —(n + 1) 7 [s|]°] —exp[ —n~"|s|°]

<[sl®n =" —(n + 1)~ ")<ppls|n =t .

Using this inequality we get

E[U* 5[ (et T g n y""°)¢1(t"s)ds)2]

—nf

<,}/2p2n—2—2pr. dsf dsr{sla+6—)lsl'a+5—]
|E[¢ t—SW(t—S)]I
<7/2p2 —272ypf ds afs'[s{“*‘s"[s'I"*&'l

[E [$i{s)(s')]]

KCn =272 dxy|x, 2+ 9~ E [,(0)y(x,)]].

= IL
In the last step we have changed variables, setting (IL.18)

x; =5 — 5, and computed the integral
f dsl's'+xlla+6~l,sl'a+671=C,xl,2(a+6)fl

Ifgef (R “), then E [¢,(0)¢,(x,)]

is the Fourier transform of a function from .%; therefore, it
decreases rapidly. Hence the last integral in Eq. (I1.18) is
finite fora + &8 <. If g€.%(R ¢) we have to apply assumption
(ii). Let us denote

o(x) = E [0ty {x)] = j dpp( )| p: [ P P
(IL.19)
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If p( p)| p1|** | & p)|*€L,, then v(x) is continuous and veL,
with r = ¢/(g — 1) from the Hausdorff-Young inequality.
Applying the Holder inequality to

A A
jdX1|xllz(0+5)—l( [x1] ) ( 1+ |x,|) |v(x,,0)],
1+ x| x|

with appropriate A < 1/7, we get that the integral (I1.18) is
finite if {1 — 2(a + &)) > 1. Next, if

g~(p)=f~(pd_1)ey(Rd_l)

and

o(p) =fw dplm) ———

we can compute the integral
eip,x, 2a
jdp, 2 z[plI 2
pr +(m*+ps_y)
and show that it behaves as (m* +p2_,) " '|x,| = '~ for
|%;]—> 0. Therefore, the last integral in Eq. {I1.18) is finite.
With the estimates (II. 17) and {I1.18) we get
E [ (§7+l _57)2]<K1n—2-27p +K2n2ap——2
xexpl — 2{n + 1) ~n®].

PR

(I1.20)

—1—€

Choosingp > 1/2yanda, =n with € small enough we

_ 1

P{V loutem )= gutsioxa IR 0167, —xi

<R “HK, + K.E [(InT ~'B -, ,(0)° "]}

get the convergence of the series (I1.15). That & J(x, _, ) con-
verges to a process equivalent to g, (£,x, _ , } follows from the
convergence of § 7(x, _ ) to@,(t,x, _,)in the mean, whichis
a consequence of the point-wise (i.e., for each ¢ convergence
of £7 (IL.8) to $(g(p)e®) and the Fatou lemma.
As the consequence of the last two lemmas we get
Theorem I1.7. Assume (i) and {ii) with
&(p)=fps_,}S (R "). Then, with
@8, f) = @ (e®'f{py_ 1)), the following inequality holds true
with probability 1:

B e—1p
#0S) =g B Nl <t —17|In T =
for [t ], |t'| < T, a certain constant &7, and an a.s. finite ran-
dom variable B, {(depending on f}.
Proof: This follows from Lemma I1.5 [Egs. (II.11) and
(IL.13) with x, _, = 0] and the a.s. convergence of § ['(0)
(Lemma IL.6).

Remark: Theorem I1.7 has been proved in Ref. 3 under
an additional assumption {assumption d) on higher order
Schwinger functions. Note, however, that it was incorrectly
claimed in Ref. 3 that B, can always be chosen to be
integrable.

Lemma I1.8.

In

)
In—=2
I, —xi]

for |x,|,|x; | < T /2, with certain numerical constants K, K.
Proof: The inequality (I1.11) holds true with probability 1 foreach n, X, _,and |x,|,|4 |< T. Hence the probability that for
certain 1, x, x' an inverse inequality holds,
2T Ne—We
Tz
|x —xi]

d {nfx,lﬂ;(xd 1)=&k (xa )| >R(M(g)lx, —x;

<P [(;f"(x,x’) (ln _L)ql —pVp >R ]
|, — xi|

(1 —p)/,
<R'E [mn (x,x’)(]n———ZT——) ’ p]
X, —xi]

<R Y\ + LE [(nB}, (0T )= Ve]},

where in the last step the estimate (II.12) was applied.
Now, as £} (x,_)}—@ (x,,x,_,)as. (Lemma IL6) Eq.
(I1.21) implies the inequality formulated in the lemma. We
come finally to
Proof of Theorem II.1: We could define %', and & | for
each j as integrals over ,(x;,x, _ ) and prove Lemmas
(I1.4)—(11.8) for them [there is an asymmetry in j when
&(p) =f(ps _1); nevertheless, the estimate of Lemma I1.8,
which we need, also remains true for each in this case].
Next, we repeatedly use the inequality

'¢)g(xl’xd7 )= Py (x1,x5 1)
<|¢g(xl’xd— = ‘Pg(X;sxd— 1]
+ @ (X1Xy 1) — @gxi x5y )] (I1.22)

till we get on the right side of Eq. (I1.22), a sum of terms
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(IL.21)

|
2|@.(¥) — @, (¥')| with the vectors y, y composed from com-
ponents of x and x’, with only one component of y’ different
from y. For each |@,(y) — @, (y')| we have the estimate of
Lemma I1.8. Using the inequalities
o — 1/ ,
2T Ty ) p<K|x—x’i“
]

;|xj - x;l"(ln E——

and P(u.;)<Z,P(<Z;), we get Theorem IL.1 [Eq. (IL.6) fol-
lows from Eq. (I1.4) if we let R— 0 .

Il. WEAK COMPACTNESS OF MEASURES WITH
SUPPORTS ON CONTINUOUS FUNCTIONS

Let us specify our probability space of Sec. II as
(1.7 1), where #"is the dual to the nuclear Schwartz space
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F(R*?), Z is the g-algebra generated by the cylinder sets,"
and y is a cylindrical probability measure on 2. Now, for
each ge.(R ) we can define a map g':.#(R *}—C(R “) into
the space of continuous functions on R ¢ by means of the
formula

gl@)x) =@ (T8 = plal- — x)) = ¢, (x)
(T, means the translation). The image of the cylinder set
Z (X 5eesX,)

= {@eS" (@ (X, ), 5%, ))e  CR"}C Z

under g’ is what is usually called the finite dimensional {cyl-
inder) set in C (R “) and denoted I1 ', /. Denote by &,
the minimal o-algebra generated by such finite dimensional
sets, Then g’ defines a map of the probability space (.*',.Z ,u)
into (C, Z . ,v), where v is the measure ug’ ' defined by the
formula

vS)=pulg'S) forS=g¢gB, BCZ.

The image of the topological space .’ (with the usual weak
topology) under the transformation g’ is a topological space
of continuous (moreover C* ) functions on R ¢. We may al-
ways consider v as defined on a larger topological space @
with support on a certain measurable subset of @. We take @
to be the space of continuous functions on R ¢ with the topol-
ogy (weaker on @ng’.”"’ than the image of the weak topology
of ") defined by the family of open sets

Uxa = [)(e@:iggl x (%)l <a] ,

where K are compact subsets of R . It can be shown that
with this definition open (closed) sets in @ are v measureable.
To see this it is sufficient to note that the set
{sup,.x |x (x)|<a} is an intersection of the finite dimension-
al (cylinder) sets

{lxtx)<a, x;eK,i=1,..,n}.

So, v can be extended to all Borel sets. Let us note finally that
the transformation g' is a continuous transformation of %"
into @.

Let ¢ (@ ) be the space of continuous bounded functions
on P. We define the weak topology in the space .#(®) of
measures on P (see Refs. 4 and 14) saying that v, if

| ok, by} [ Fuduly)

for each Fe¢' (@ ). We say that a set 3 of measures ve.# (@ ) is
weakly conditionally compact if each sequence of measures
{v,}1CZ has a weakly convergent subsequence. It can be
seen that @ is a limit of an increasing sequence of closed sets.
For such topological spaces @ the following criterion of
weak conditional compactness is known'* (& is metrizable
so the results of Prokhorov* would suffice).

Theorem [III.1 (Prokhorov, Varadarajan). Let
X C _# (<P )beaset of probability measures on @. If for each ¢
there exists a compact %" C & such that for all veZ,

vP — ) <e,

(I1L.1)

(I11.2)

then = is weakly conditionally compact.
By finite dimensional distributions we shall mean
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ﬁ exp [iu;x(x;) ] dvly).

® =1

P(UX sl X)) = (IIL.3)

They completely determine the cylinder measure v.

Theorem IIL.2. Assume we have a sequence of probabil-
ity measures {vy }e#(®), such that their finite dimensional
distributions converge and the set {v, ] is weakly condition-
ally compact. Then the sequence {v, } is weakly convergent
to certain probability measure v on .

Proof. From the convergence of the finite dimensional
distributions it follows that all the convergent subsequences
of the weakly compact set {v, } have the same limit, which
determines the measure v by its finite dimensional distribu-
tions.

The next theorem, proved in Refs. 4 and 14, shows that for
certain sets we can get v(.¢7) as a limit of v, (&)

Theorem IIL.3. The weak convergence v, —uv is equiva-
lent to each of the following statements:

(i) limsupv,(C)<v(C) for all closed sets CC @,

(ii)lim inf v, (% )>v(%) for all open sets % C P,

(iit)lim v, (&) = v(«Z) for all &/ C ¢ such that

there exist %,C,% C &/ CCand v(C — %) =0 (in a metric
space this means that the boundary of .o/ has v measure
zero).

Theorem II1.1 gives a criterion for the weak conditional
compactness in terms of compact sets in &.

The following generalization of the Arzela—Ascoli theorem
(see Refs. 15 and 16) allows one to determine compact sets in
D.

Theorem L4, If a set ¥ C @ consists of functions
which at each point xeR ¢ are equally bounded and equally
continuous, then the closure of ¥ is compact.

So, to establish compactness of & we have to check for
every x,€R “ that the set |y (x,)| is bounded when ye% and
that for every x,cR“ and €>0 there exists & such that
(x4 — x| < 6= |y{x) — y(xo)| < € for all yeF.

Now consider a family u, of measures on %'(R9),
which is uniformly bounded in the sense that (iii)

| du o) exvgte) = E, Lexvp (gl <I )

for ge.¥ (R ¢) and certain I ( g) independent of y.
We are going to show that the setv, = u g'~ " of (iii) fulfills
the Prokhorov criterion of Theorem III.1.

Let us prove first

Lemma I11.5. Under assumption (iii) the set
{lx (x)| > L } C® has for each x a v, measure less than
e (g +1(—g)l.

Proof:

jequo( gl — x)d, () = fexpx(x)dvym

> expL v, {y{x)>L }
Similarly
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fexp[ — (gl —x)] du, (@)
>expLv, { —y(x)>L}.

The estimate (I1.4) of Theorem I1.1, Lemma II1.5, Arzela—
Ascoli theorem, and Prokhorov criterion allow one to prove.

Theorem IIL6. Assume we have a family {u, | of trans-
lation invariant measures on ¥ (R ¢) fulfilling (iii) such that
the constant M ( g) in assumption (i) of Sec. IT (with
E,[ ]1=Jdu,[ 1) doesnotdepend on y, then the set of
measuresv, = . g'~ ' on @ is weakly conditionally compact
in A (D).

Proof: We have proved in Lemma II1.5 that
v, {x(x)| >L } <Ce".So, toshow that the condition (II1.2)
is fulfilled for a set of equally bounded and continuous func-
tions it is sufficient to show that the right hand side of the
estimate (I1.4) of Theorem II.1 is bounded by R ~ 'K, where
K does not depend on y. This will prove that a certain set Hy
of equally (Holder) continuous functions has a measure not
less than 1 — K /R. In this way the set of equally bounded
and continuous functions will have the measure not less than
1 —K/R—~Ce t>1—e AsK,and K, in Eq. (IL.4) are
numerical constants independent of the measure u,, the fol-
lowing lemma completes the proof of Theorem III.6.

Lemma I11.7. Assume (iii) and that M ( g} in assumption
(i) does not depend on ¥, then

E, [(n(B%, (/T + 1)~ 7]
is bounded by a constant independent of y.

Proof: Let us note first that ¢;(x;) [x; = (0,...,x;,...0)] as
defined in Eq. (I1.2) has a realization a.s. continuous in x;.
This continuity could be shown in the same way as the con-
tinuity of @, (x;, x, ) in x;. We would define a process ¢
having the spectral measure |p;|* * “dw,( p), with € such that
a + € <4, and expressed ¥;(x;) as an a.s. limit of an integral
over ¥ being Holder continuous with index €. From this con-
tinuity and the definition of B, [Eq. (I1.5)] we get that the
inequality

§2T+ H{0)<2(2T + 1)\ \8'219+ lexp|r¢j(xj)|p/<p -1

p/lp — 1)
=2(2T + l)exp| sup r|¢;(x;)]
1x;1<2T + 1

(I11.3)

holds true for almost every ¢. Therefore (with the value of r
coming from Lemma I1.3)

E, [(1n§27+ O/ T + 1P~ 7]

“Wilg) "y |
ap)

< sup  |¢;(x;)]

ix <27+ 1

(I11.4)

Next
9,01 <19 (0)] + |#;(x;) — ,(0)]|

and
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P, Wsil>5)< (101> 2)

T+

+ PY(tx.Ilelgﬁ» IW,-(O) - '/’j(xj” >%),

2, (101> L)<e -k,

With K| independent of ¥ follows from assumption (iii) by
the same argument which was used in the proof of Lemma
HIL5. It remains to estimate the second term in Eq. (II1.5).
For this purpose, due to the fact that ge#(R¢), the knowl-
edge of the covariance of ¥ will be sufficient. This follows
from the following (Gikhman and Skorohod,'” Sec. IIL.5).
Lemma: Let 3, be a stochastic process such that

E [(, — ¢o)?]<H|s|'*%, €>0,|s|<2T+ 1. (IIL5)

Then there exists a constant K depending only on € and T
such that

P( sup

Is|<2T+ 1

Ko/
0, — ¢ 1>l)<—.
0 2 y2

Our ¢;(x;) depends only on one coordinate and [cf. Eq.
(I1.19)]

EY [(¢j(xj) - '/’j(o))z]
—2 f do(p)|g) Plp; (1 — cos px;)

<xffd0(P)l§(P)lzle P+ =x7E, [(@ €Pp)lp]' * )]
(IIL7)

(I1L6)

But

E, [ph)I<E,lexpg(h)+exp(—@(h))]
<Ih)+1I(—h)

from assumption (iii). Hence, .« in Egs. (IIL.5) and (II1.6) of
the Lemma can be chosen independent of y. This leads to the
estimate

PY( sup (I1L.8)

_ 1
|#;(x;)| >.V)<K2(e 24 —'2'),
|Xj\<2T+ t y
with K, independent of y. Integrating by parts in Eq. (I11.4)
we get that

E [(1n§£T+ 1 (0))(’]' Wp]
v T+1

= Klf P, (suplx,(x,)] > »Mdy<K ,
0

K being independent of . This completes the proof of
Lemma III.7 and Theorem III.6.

Remark: We could also consider in this section trans-
formations (g'p )(x) =@, (x)(@e¥") with g£7(R ¢) such that
the condition (ii) is fulfilled. A minor complication then
arises from the fact that not all @, (x) are continuous, but
almost all. In such a case ¥ could be defined by means of the
finite dimensional distributions (III.3)

P (U1 X1y X, ) = fl'[ exp i@, (x; Jdulp ).

i=1
The results of Sec. II show that v can be realized as a measure
on the space of continuous functions with the o-algebra of
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measurable sets (including Borel sets of @ ) generated by the
finite dimensional (cylinder) sets. Then the weak compact-
ness of the set of measures {v, } follows if only we are able to
prove Lemma II1.7. The proof of this lemma is based on the
uniform integrability in ¥ of sup |¢;(0) — ¥;(x;)|. This uni-
form integrability is true'? if E [(¢, — ¢,)]<4 |s|' * € for
certain 7 and A4 independent of y. For such an estimate to be
fulfilled [for all g of (i)] an additional assumption is needed,
eg., E, [ (8 1<CI(E, [@(g)*])” would be sufficient [and
holds true in P (@ ), and (¢*);]. Then Theorem I11.3 leads to
the conclusion that the Holder continuity (with index a) of
paths remains preserved in the limit y— o if it is true for
each y (this is of some relevance to the problem of existence
of noncanonical field theories).

IV. AN APPLICATION: WEAK COMPACTNESS OF
MEASURES IN THE REGULARIZED A(p),

In the constructive field theory (see, e.g., Refs. 1 and 2)
one considers measures of the form

dut )= {CXP[ - L=P (rpx(x))’d"] duolp )] R

xexp| — [ P @utrliax|dup), (V.1

where 1, is the Gaussian measure with the covariance
(—4 + md) '(xp),A is abounded region in R %@, (x) =
@ (¢"w,(p)), with @, such that (i) =Sduplix)< o
and :P (@, ): is the normal ordered !* polynomial of order 2.
We are then interested in the limits A—R %o, —1{x— o0 ) of
the characteristic function E {! [exp ig, (g) | =/ dulip)

exp i@, (g) or of the moments of u2. It is known that the limit
A—R 9 cannot exist in the sense of the convergence of u2(.«7)
for all sets . C.’, because the infinite volume and finite
volume measures are mutually singular. This also seems to
be true regarding the x— o limit if d > 2.

We will choose w, (p) independent of p,. In such a case
the Osterwalder-Schrader (O.S.) positivity'' is preserved
{but the Euclidean invariance violated). Then we can get a
useful bound on E [¢®®] coming from the chessboard
estimates™'®

£ 2 [exp ug, lg)]= [ expup, (o

<epr [a%, (P — uglx)p ) — % (P)]dx (IV.2)
if A is invariant under the reflection x,— — x,, and g(x) has
its support in A, where

@ P)= tim, =i exp| — [ 2 (utxyas|duie
(IV.3)

and P — ugg means that theinteraction polynomial P (@ ) has
been replaced by P{p ) — uge [the existence of the limit in
(IV.3) is again the result of chessboard estimates, i.e., a con-
sequence of O.S. positivity]. If g has a compact support then
the right side of the inequality (IV.3) does not depend on A,
because it involves integration only over the support of g. By
compactness arguments a limit A—R ¢ exists, although it

1499 J. Math. Phys., Vol. 23, No. 8, August 1982

may be nonunique. It seems that for small couplings (and
m > 0) the cluster expansion '° would work for the ultravio-
let regularized theory, proving the existence of the unique
infinite volume limit. Further on it will be assumed that a
translation invariant infinite volume limit exists and that a
imeasure u, exists such that

Jlim EZ [expug, (g)] = E, [expup.(g)]

- fexpu% (gldisap).

Equation (IV.2) shows that it is sufficient to get a bound
on the pressure @, in order to establish (i) of Sec. II and (iii)
of Sec. I1L. Let us note first the following lemma proved in
Ref. 20 (Lemma VII.11).

Lemma IV. 1{Guerra, Rosen, Simon). Let
P(x)=2]" ,a,x{a,, >0), then there exists a constant 4 (de-
pending only on #) such that

P (@ (x): — ug@, (x)> — a,,4 [{@2)" + ola,ug)],
(IV.4)

where

2n—2 o _; 2n/j
U(G,ug): Z ( J) + 1uI2n/(2n——~l)
j=1 |aZn |
Xaz_ 2n/(2n — l)lgIZn/(Zn - l)'
As a consequence of Egs. (IV.3) and (IV.4) we get
Lemma IV 2. With certain constant D (k,a;)

a, (P —ugp)

<D K4, A 4 Zn/(Zn—l)a i — /2n — 1) 2n/(2n—l)‘

Lemma IV.3. Assume g has a compact support, then for
the polynomial P (x) = 27" ,a,x/,

E, [exp ug,(g))
<exp [(D (k,a;) — &, (P))| Suppg|]

Xexp [A |u|2n/(2n - l)(azn) - 1/2n — l)fdxlg(xHZn/(ln — l)].
(IV.6)
Proof: From Egs. (IV.2) and (IV.5)

E, [exp up.(g)]<exp( — a* (P)| Supp g|]
Xepr- a’, (P— uglx)p )dx
Supp g
<exp [(D (x.a;) — a*, (P))|Supp g|]
Xexp |4 (ay,) =/~ Huprin - " faxlgenypren 1|

Theorem IV.4. Assume that in a translation invariant
P(p,)s> @, is bounded in « from above and that a,, (k)
>d,, >0, then the set of measures (v, },v, =g ',

(8eC (R 7)) is weakly conditionally compact.

Proof: The assumptions of this theorem together with
Lemma IV.3 and Eq. (IV.2) ensure the fulfillment of the con-
ditions of Theorem IIL.3.

Remarks: (1) We allow here an arbitrary dependence of
a; on « in order to take into account the counterterms.

(2) Instead of introducing @, as @ (e w, ( p)) we may equiv-
alently leave @ unregularized, replacing y,, by the Gaussian
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measure with the covariance being the Fourier transform of
(p* +mg) ™ 'wy(p).

V. DISCUSSION

The investigation of properties of the Euclidean fields
deals with measures of certain measurable subsets of *’. We
have discussed here in detail the continuity properties (see
also Refs. 1, 21, and 22 for other results in this field). The
weak compactness of measures established in Sec. II1 allows,
on the basis of Theorem III.3, one to determine the measure
ufdyofasetdifu, (4 )areknownandifu, —u inthe sense of
the convergence of the characteristic functions. The sets A,
which are considered in Sec. II], are of a special form. They
should belong to the o-algebra Z , generated by the cylinder
sets

{pe S (@, (%) .pq (X, ) CBCR "}. (V.1)

If now for a set Ke.Z _, closed in the @ topology (Sec. III),
4, (K) =1, then also u(K ) = 1. We have discussed some
closed sets K describing the behavior (fluctuations®) of g, (x)
at x— oo in ultraviolet regularized P (@ ), in our earlier pa-
per.’ The behavior at infinity of a P(@ ), random field and
the Gaussian field are different. Due to the weak compact-
ness of i, from Sec. IV, if K is closed and p, (K') = 1, then
alsou(K ) = 1. If for a Gaussian measure, (K ) # 1, we could
conclude that u is non-Gaussian. We were unable in Ref. 5 to
exclude the Gaussian limits without additional (rather
strong) assumptions. The possible improvement of these re-
sults could possibly be obtained with the use of x dependent
sets K and some results of Topsoe®* on uniformity in the
weak convergence.

We have restricted ourselves in this paper and in Ref. 5
to the o-algebra & _ generated by the sets (V.1). We have
based our approach on the results of Prokhorov* on weak
convergence in metric spaces. It appears that the weak con-
vergence of measures on nuclear’ and even more general
Suslin spaces® (Appendix) follows from the pointwise con-
vergence of the characteristic functions. Then Theorem I11.3
remains true. We can conclude, e.g., that lim sup i, (K')
<u(K )if K is closed in the weak topology of 5. Unfortuna-
tely, we were unable to describe the fluctuations of @ in terms
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of sets K closed (or open) in this topology. The difficulty
stems from the fact that in order to describe ¢ at infinity, we
first regularize the distribution ¢. Then, the sets generated

by @, (x), with fixed g, are not closed in the weak topology of
S
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It is found that the calculations of higher-order tadpoles and some integrals associated with the
triangle diagram reported by Capper and Leibbrandt are incorrect within their dimensional

regularization scheme.

PACS numbers: 11,10.Gh

In this paper we will demonstrate that the calculations
of higher-order tadpole integrals and the integral associated
with pure graviton triangle diagram reported in Ref. 7 are
incorrect. The authors of Ref. 1 considered the integrals

J, = fd *q,d™q, [9iq3lg) — )],
Jz — fd qud Zuip [p2(q _p)2q4]\|’

Jy = fd 2k [k *(k — po)tk +p3)"1 7,

and they claimed that within the dimensional regularization
scheme proposed previously in Ref. 2

Ji=mT (1 —w)F2 —w)f* 3, (1)
Jy =T (2 — w2 —w)f2 4 (2)
J,= %ﬁw(pf)w~3[r(3 — w)/(w —2)]

xf dE (co 4+ i + 0. Y12

x| 2 ~2,Fw—2,4;w—1;z,/R?)
—Zg—zzFl(W-2,§;W—1;Zo/R2], (3)

J

where
R =(co+cif + 62,
Jo=flw)/pi,
co=(1+4)/4 2,=/fo+&(1-£p3/pt,
er= —(pppl, z,=fo+£(1—£)pL/pL,
¢, =(ppsf — P3P /p}
[see Ref. 1, Eqs. (8), (13), (19), {20)].
An examination of the method applied for calculations
of J, and J, reveals that the formulae (8) and (13) given in Ref.

1 have been obtained by a misuse of the t’ Hooft—Veltman
formula

Pr+p3= —py,

d qu 2\n
f e 7 =0 weC, neNg (4)

[see, e.g. Ref. 3, Eq. (3.13), and Ref. 4, Eq. (2.6)]. To prove

our statement, let us repeat the calculations along the lines
presented in Ref. 1. First we rewrite J, in the form

Jy=mr(2— w)f;déd“q, @) [REN— &)+ /12

(see Ref. 1 for an explanation of symbols) and then expand
the term in the square bracket in power series about gZ. This
yields

g ﬂw”’"”ﬂ"g Ud“q. @) XL+ E( = £ — 2 4

+(1/n1 ~ £V "w — 2w — Hlw — 1 —m)ig) " 7"+ ” )

[see Ref. 1, Eq. (7)]. Now it is claimed in Ref. 1 that, due to
the H-V formula (4), all terms in (5) vanish except the first
one. The point to note is that the last statement is equivalent
to the presumption that

n—wo

f d ¢ lim (g?)" = lim |d *¢(¢?)", (6)

and, since the last integral vanishes [see (4)] for any finite
neN &, then the conclusion fd g (¢°)" = 0 follows. Howev-

“Supported by MNSzWT Grant No. 04.3.14.02.05.2A — 1K8E and par-
tially supported by INT Grant No. 73 — 20002 AO1.
'Supported by MSzZWNT Grant No. 04.03.14.02.05.2A — 1K7E.
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gr, one observes that:

(a) Eq. (6) does not follow from (4);

(b} if (6} is taken at its face value, then it quickly leads to
the following contradiction with the Capper—Leibbrandt ex-
tension of the Gaussian integral:

f é 2:30 exp( — xg* + 2bq) = (47) ~“x ~ “exp(b */x — fx)(7)
T

(see Ref. 2).

First it is obvious that our formula (2.6) given in Ref. 4
has been proven for (w, z)eC? and does not hold when (w, z)
belongs to compactified C*. And an analysis of the Capper—
Leibbrandt proof of (4) (see Ref. 3) reveals that their proof
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also does not cover the limit case n— o [the series
37_o(— 1)(?) makes no sense when n— oo ]. Morever, if (6)
were true, then

[agee- fdzw"éo( —(11))"(q2)"
= S (- 1r[amggran,

n= ()

and one gets { d 2‘“q e~ = 0insuch a case. But from (7) one
gets immediately that fd **exp( — g°) = 7 exp( — f). So (6)
cannot be considered even as an additional assumption an (4}
holds for finite n, ne N §, only. (This fact is usually reflected
by the statement “‘integrals over polynomials give zero with-
in the dimensional regularization scheme; see, e.g., Ref. 5, p.
107). Thus the final formulae for J, and J, reported in Ref. 1
remain to be proven, and (4) is not too useful in the treatment
of multiloop massless integrals (see Ref. 3, Sec. 4).

Now let us consider J;. It follows from (3) that J, =0
provided p3 = p3 and p? #0. However, we will demonstrate
that if this integral is calculated correctly, then, in general,
J,7#0 when p? #0 and p} = p}. It is obvious that J, can be
rewritten in the form

2w 2w 2w
J»_J’dk+BJ'dk+A dbk’
C

where a = (k + p;)°, b= (k — p,)?, ¢ = k?, and the coeffi-
cients 4, B, and C obey the relation

Ay +Bz+ (A + B+ C)k> + 2(dp, — Bp,jk = 1,
y=pi, z=p;. (8)

If we assume that

Ap; —Bp, =0, A+B+C=0, Ay+Bz=1 (9)
then (8) is evidently satisfied. Further, we will assume that
this is the case and additionally suppose that
p/(p3)'* = py/(p})'/* (we presume that
Py #0, p3 #0, pi #0). After some algebra, one finds

_ vz _ vy

wWzt+zvy' Wztzy'
C= - Mytvz
Wz+zvy

Shifting the variable k—k + p, in the first integral and
using the relation p, = — (p, + p,), one obtains
Zwk Zwk
sz(k P jkz(k +pi)

J k "(kZWkpz)

The integrals of this type have been calculated already in
(Ref. 4 see Appendix A), and we give below the explicit for-
mula only for the case N = 1 (to compare the result with
given in Ref. 1). One finds
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Tw— 1T w—1)

Jy=mT(2 — w) T ET

2
X[C(4f_+_p%)IU—Z 2FI( 2—w )2) il 2 )
4f + p
2
2\w—2 3. P3
+ B(4f + p3) J(%z_w%’ﬂ4p§>
+A(4f+p§)‘”‘22Fl(%,2 )]/
f+P2
Fi(L, 2 —w; §51). (10)
It. is easy to see that when p, = ps (i.e, p; = p}), then (10)
yields
7, = ﬂ_wr(z_w)l“(w—l)f‘(w—l)
P I'[2(w—1)]
2\w—2 1 p‘;‘
X [(4f + p3) il =, 2 —w;3/2:
2 4f+P2
—(4f + 4p3 ) 2 2F,(1/2,2—w;3/2 )]/
f+P2
Fi(1.2 - w3/, (1)

Obviously, the right-hand side of (1 1) does not vanish identi-
cally, thus our conclusion that, in general, J,=0 when
p3 = p; follows. Since the sum in the square bracket in (10)
vanishes at w = 2, one easily finds that lim, _,(2 — wl,

= 0; hence J, has no pole at w = 2 in this particular case.

In the general case V #0 [see Ref. 4, Eq. (2.2)], one has

Jy= 77"”ijdx dydz(x+y+2z)—¥

Xexp[ _ ayz+Pxy+yxz
X+y+z

1 1 —x oo
= 7r‘”J‘ dxj dy| dzz22—v
0 0 (4]

Xexp{ — 2" — z[ay(l — x — y) + Bx(1 — x) + yxp]}

1 1 ©
= 1r'”J. dx(1 —x)f dtJ- dzz> "
0 0 (4]

X exp{ — 2 — 2(1 — x)[a(1 — x)t (1 — ¢)
+Bx(1 —t) + yxr 1}

=7wa dzzz'“’exp(—sz)f dxxJ. dy exp( —zA ),
0 0 0

where

—k+y+2)7

A=x{(1 =x)[ —ay(l —y) + B(1 —y) + ] + ap(l — y)},
a =P%s :B:p%! 7’=P§
Unfortunately, such a complicated structure of J; prevented

us from performing all integrations explicitly. Although J,,
when N = 1, can be reduced to the form

S F(3“w)fd
r(3)
X [f+ x(1 —x)B]“"3-x-F1(1,3—w, Z;L, —1—),
N )2
where
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i =lax + (y =81 =2 £ 4 120x,

4 = [ax+(y —B)1 —x)]* + da[ Bx(1 —x) +f],
the last integrand is still very complicated. However, J; can
be calculated explicitly also when, e.g., p, = — p;,
p3 =0, p? = 0. In this particular case one gets

Jy= ifmdz‘3‘w" lg—2 = s Eﬂf(w—swv
2 b 2 N
><F( 3= w).
N
Hence J, has a pole of a high order when V = 1 (and vanishes
when N <0) at the physical point w = 2. It is obvious now

that a singularity structure of J; in the w plane is a very
complicated function of external momenta p,, p,, p;. More-
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ever, itis not a continuous function of p?, p3, p} (see also Ref.
4).

Summarizing, we have demonstrated that the calcula-
tions of J,, J,, J; reported in Ref. 1 are unreliable and the
final conclusion concerning J, reached in Ref. 1 thatJ, is free
of divergences at w = 2 is, in general, incorrect.
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In this work the mathematical structure of principal superfiber bundle P, is used to give a
geometrical description of gauge theories. The base space of P, is an § “2-supermanifold X, (four
commuting and two anticommuting variables), and the structure group an S "° supergroup G,,
where 7 is the dimension of the gauge group for the classical theory. The body of P, is the usual
principal fiber bundle P of gauge theories. Gauge and Faddeev-Popov fields arise as superfields,
components of the connections in P, in a local coordinate system. BRS (Becchi, Rouet, and Stora)
and anti-BRS transformations are gauge transformations, in P,, of parameters the ghost and
antighost superfields, respectively. In the case of soul-flat connections, which are connections in
P, coming from connections in P, the BRS and anti-BRS transformations are finite translations
along the anticommuting directions of X,, and generate an S ®-supergroup.

PACS numbers: 11.10.Np, 11.30.Pb

I. INTRODUCTION

The mathematical structure of gauge theories was dis-
played in 1975 by Wu and Yang,' who established a diction-
ary of equivalences between physical terms and mathemat-
ical concepts. Thus a pure gauge theory is described by a
principal fiber bundle P (X, G ), with base space X (the space-
time manifold) and structure group G (the gauge group). The
gauge fields 4, and the strength field tensor F,,, are the
coefficients of a connection (1-form) in the principal fiber
bundle and its curvature (2-form), respectively, in a local
coordinate system in P. In this scheme the gauge transforma-
tions are fiber bundle equivalences.

When a gauge theory is quantized, one needs to intro-
duce in the Lagrangian a gauge fixing term so that the effect
it produces is twofold: (a) New (spinless and anticommuting)
fields appear, the so-called Faddeev—Popov (FP) fields; (b)
the original gauge invariance is broken and a new invariance,
first discovered by Becchi, Rouet, and Stora® (BRS) arises.
FP fields and BRS transformations do not appear in the Wu
and Yang’s dictionary. Nevertheless, several attempts have
been recently done in order to provide them with a precise
geometrical interpretation.

In our knowledge, the first essay in this sense was
achieved by Thierry-Mieg,” associating the FP ghost with
the vertical component of the connection 1-form in the prin-
cipal fiber bundle P (X, G ) and the BRS transformation with
the exterior differential along the fiber. In this way the FP
ghosts, as 1-forms, have the physically required anticommu-
tativity properties. However, in this scheme, FP ghosts get a
space-time dependence only by means of changes of coordi-
nates in the fiber bundle, which cannot be interpreted as
gauge transformations. On the other hand, neither do FP
antighosts have any geometrical interpretation nor do they
transform under BRS transformations.

Following the idea of interpreting FP fields as 1-forms
we introduced, in a previous work,* an enlarged principal
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fiber bundle allowing one to interpret geometrically FP
ghosts and antighosts. It was thus possible to give both of
them a space-time dependence by means of true gauge trans-
formations. BRS transformations have, in this scheme, an
interpretation similar to Thierry-Mieg’s one. As a conse-
quence of our enlarged mathematical structure, new anti-
BRS transformations did appear together with the usual
BRS transformations. The new transformations had already
been introduced in the literature by Curci and Ferrari® and,
more recently, by Ojima,® without any relation to the geo-
metrical structure of gauge theories.

The interpretation of FP fields as 1-forms on a finite-
dimension manifold is not, however, fully satisfactory since
it would lead to the vanishing of Green functions containing
a number of FP fields higher than the dimension of the mani-
fold.” If we wish to save the former problem, casting the
interpretation of FP fields as 1-forms away, we need, as usu-
al, to introduce an infinite-dimensional Grassmann algebra
in order to give the anticommuting character to FP fields.
On the other hand BRS transformations map commuting
into anticommuting fields, and this fact led Ferrara, Piguet,
and Schweda® to interpret them as supersymmetric transfor-
mations. Recently, Tonin and Bonora® have extended these
ideas also to anti-BRS transformations. These authors intro-
duce’ a superspace, with two anticommuting variables, and
define a 1-form on it, to be identified with a certain connec-
tion, whose coefficients are superfields involving gauge and
FP fields. Furthermore, by imposing some conditions of null
curvature, they interpret the BRS and anti-BRS transforma-
tions as translations along the anticommuting variables. Ina
later work,'® Bonora, Pasti, and Tonin searched for a geo-
metrical structure where the former 1-form would corre-
spond to a connection form. They do not find a structure of
principal fiber bundle, as would be expected in a gauge the-
ory, but they are constrained to introduce “ad hoc” a much
more complicated structure, called by them quasifiber
bundle.
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The aim of this work is to find out a natural geometrical
interpretation of FP fields and BRS and anti-BRS transfor-
mations within the framework of the structure of principal
fiber bundle. To this end, we use the concepts of supermani-
fold, supergroup, and superfiber bundle which have been
developed in another paper.'

In Sec. II we present a summary of concepts and results
of the differential supergeometry,'' which will be useful in
the present work. In Sec. III we build a principal superfiber
bundle whose body (real part) is the principal fiber bundle
P (X, G) of unquantized gauge theories (that is the theory
without FP and gauge-fixing terms). We define the connec-
tion 1-form, on the principal superfiber bundle, whose coeffi-
cients are superfields as in Bonora and Tonin’s heuristic con-
struction.® Among the connection 1-forms we stress those
{soul-flat connections) coming from the pullback of a con-
nection in the body P (X, G) and having automatically the
required property of null curvature along any anticommut-
ing direction. In Sec. IV we interpret BRS and anti-BRS
transformations as mappings, in the space of connections,
determined by true gauge transformations, in the superfiber
bundle, whose parameters are the superfields corresponding
to ghost and antighost fields. We also analyze the mathemat-
ical conditions which must be satisfied by the principal su-
perfiber bundle. For soul-flat connections we recover, for
the BRS and anti-BRS transformations, the interpretation of
translations along the anticommuting variables in agree-
ment with the results of Ref. $. It is easily proven that the set
of these transformations generates an additive supergroup,
with two anti commuting parameters, isomorphic to the su-
perspace S *2. The parameters of this supergroup are global
(they do not depend on the point of the supermanifold) so
that the total invariance of gauge theories (BRS and anti-
BRS) is global-like, and the introduction of new ghost fields
is no longer necessary.

Il. A SUMMARY OF DIFFERENTIAL SUPERGEOMETRY

Since FP fields are anticommuting quantities and the
charges generating BRS and anti-BRS transformations anti-
commute with each other, the suitable framework to analyze
the mathematical structure of these objects is differential
supergeometry. That is, in short, a geometry where the real,
or complex, numbers are replaced by Grassmann numbers.

Analysis on superspaces has recently been considered
by Rogers'' and Jadczyk and Pilch.'? In this section we give
a brief summary of some mathematical concepts and results
obtained in a previous work,'* which will be used later in this
paper. The originality of our approach’? can be mainly stat-
ed as follows:

{a) We introduced in Ref. 13 the concept of generalized
supermanifold, where different coordinates may belong to
different Grassmann algebras: This has been proven very
useful, in this paper, for the geometrical interpretation of
extended BRS symmetry and FP fields.

(b) Jadczyk and Pilch’s approach'? only applies to infi-
nite-dimensional Grassmann algebras, so that the superfield
expansion is lacking because one is forced to handle it with
analytic functions. Our approach'? is free of this failure: In
particular, the superspace constructed in Sec. III has its even
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coordinates belonging to finite-dimensional Grassmann al-
gebras, so that the superfield expansion holds for it.

A. Superspace

We present here a generalization of the concept of su-
perspace introduced in Ref. 13. Let B be a Grassmann alge-
bra generated by { £3;} .., (where [ is a finite or countably
infinite set of indices) with B, = 1. For MeF (I), the set of
finite parts of I, we shall define B,, as the Grassmann subal-
gebragencratedby { 5, ], if M #0,and B, = R (in particu-
lar B, = B). B, is Z,-graded, B,, = B}, @ B },, with B},

= B'nB,(i = 0, 1). We can endow B with the structure of
Banach algebra and then B,, is a Banach subalgebra.

A superspace associated to the triple (A, m, n), with

A= (K" KeF(I), m>0,n>0, is the direct product

J
B%, X"'XB%MXBILMHX"'XB;MM

which will be indicated by S ;" or §™". As a product of
Banach spaces, S ™" is also a Banach space. The heterogen-
eity of the K; will allow a minimal superspace in the con-
struction, which will be worked out in the next sections.
Given a superspace S ™", we shall consider B-valued
functions defined on an open set U of $™". A function f:
U—Bis GCifitis continuous. fis G ' if there exists a family

G, f: U—B of G, functions such that for all
x=(x,)7."elU, h=(h)75"eS™" withx + heUj,
then

fxth =1+ S 4G, fix]+oflh]) (1)

i=1
IfI,, fCB,, LCI, aconsequence of the definition of G ' is
that a G '-function f does not depend on the ith coordinate if
K, L. In the same way, G * functions (0<k < ) can be
defined as usual. The class of G *-functions will be indicated
by G*(U), which is a Z,-graded algebra: feG *(UY iff I, f
CB'(i=0,1).
If feG =(U), the following expansion can be written:

flix)= z 114, (x)gpr (X), (2)
MeF,
where F,, , = F({m + 1, .., m + n}), I, (x) = x, x, -x, if
M={i,. i}, i<iy<~<i and IT,(x) =1, and g,,
€G *(U) only depends on the even coordinates.

The expansion (2) shows that G ~-functions coincide
with the superfields which appear usually in supersymmetric
field theories.

Let us finally note that G *(U)C C *(U, B).

We define the body of the Grassmann algebra as the
mapping r: B—R which maps all elements of B into its real
part The generalization to the body of the superspace r:.§ ™"
—R ™ is obvious from the former definition. Nevertheless,
we shall only define the body of a particular class of open sets
in § ™", satisfying certain connectedness properties, and
which will be referred to as “good opens.”"?

B. Supermanifold

Let (X,, X, r) be the triple where X, and X are C =-
manifolds and 7: XX a surjective, differentiable mapping.
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A structure of bodied supermanifold is
(a)anatlas {U,, 4,} in X,
{b) a family {¢,, 1, ¢,: r~(U_)—S ™", such that
(i) {r~(U,), ¥, } is an atlas of X,,
(i) ¥, (r~'U,) is a “good open” of S ™", and r-¢,
= ¢, -r or, homologically,

Yu
r~Y(U,) Yo (r~'U,)
.
(R
U, $,(U,)JCR™

(i) Yup = Yt " ol U™ Ul U,
nr~'U,) is a G =-diffeomorphism,

(iv) the family { U,, ¢, ¢, } is maximal, and satisfies (i),
{i1), and {iii).

The manifold X is called body of the supermanifold X .
The concept of G ~ function between two supermanifolds is
induced from the definition given in subsection IIA through
a local coordinate system.

We define the tangent space T (X, ) to the supermanifold
X, as the space of tangent vectors to curves in X;. The space
T (X,) has the structure of vector bundle with fiber § ™" and
it is a bodied supermanifold, with body 7 (X ). However, we
cannot define T°(X,) as the space of derivations of functions
defined on X,. Actually, the space of derivations of G *(X,)-
functions is a different tangent space 7, (X;). The tangent
space to a point peX,, T,(X,),, is a B-module. To verify this
property, let us consider a local coordinate system (x,) in X ;
every element belonging to T,(X|), can be written as

" "a,( p)d/dx;, where a,( p)eB, while the elements of the
tangent space T'(X;), have the expression 2_","a,( p)d/dx;,
where a( p) = {a,{ p))eS ™"

The construction of the V (graded B-module}-valued
graded exterior algebra D (X, ) over the tangent spaces T, (X )
has been carried out in detail in Ref. 13,’and we shall not
dwell upon it. In particular, the exterior product of two
forms w,eD " and w,eD " satisfies the property

l)rlrz + |y sziwl /\wz’ (3)

where w, is the Grassmann grade and #; the grade of the form
®;, while the exterior differential of a 1-form o is given by

da)(X,, Xz) — ( _ l)lX.I ilelw(Xz) + ( _ 1)|X|i X + 1+ X ol
X X,0(X)) — o[ X}, X,]) (4)
where | X, | is the Grassmann grade of the vector field X.

o, Nw,=(—

C. Supergroup

A Lie supergroup G is a bodied supermanifold with a
product law providing the structure of group and such that
mapping (a, b }—ab ~', a, beG, is G *. As a consequence of
the definition we have that G = r(G,), thebody of G,,isaLie
group and r is a group homomorphism. Let us note that the
particular realizations of supergroups studied in the litera-
ture!* do satisfy to our definition.

The Lie algebra % of the supergroup G, can be identi-
fied, in the usual manner, with the tangent space to G, at the
identity e, T(G,),. Furthermore, we have the Lie superalge-
bra T,(G,)., which is graded B-module and normally re-
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ferred in the literature to as a graded Lie algebra (GLA)."
Let us finally note that T,(G,)? (even part) generates,
through the exponential mapping, a Lie supergroup. In par-
ticular T, (G ) generates a Lie supergroup with body G.

D. Superfiber bundles

A principal superfiber bundle P, (X,, G,), with base
space X, and structure group G, is a bodied supermanifold,
with body P (X, G )-principal fiber bundle with base space X,
the body of X, and structure group G, the body of G, satis-
fying the usual properties of the principal fiber bundle,'® but
where the C ~-condition for the involved functions is re-
placed by the G ®-condition. Indeed, since every G *-func-
tion is automatically C =, as we saw above, a principal super-
fiber bundle has also the structure of the principal fiber
bundle.

A connection in P, is defined as follows: Let w: T,(P;)
—T,(G,), be an even 1-form such that

(i) w(d *) = 4, where A€T,(G,), and 4 * is the funda-
mental vector field in P, associated with 4,

(i) R *o = ad{e ™ "o, acG,.

Using the property o(T (P,)) C T (G,)., we define the connec-
tion in P, as the restriction w: T (P,)—>T (G,).. The curvature
is defined from the connection in the usual way, satisfying
the structure equation 2 = dw + [, ©].

lii. THE MATHEMATICAL SCHEME

In this section we shall proceed to construct a suitable
mathematical scheme where BRS and anti-BRS transforma-
tions acquire a geometrical interpretation. In a recent work,’
Bonora and Tonin succeeded to interpret the BRS transfor-
mations as sypersymmetric transformations using heuristi-
cally the concepts of connections and curvatures in super-
fiber bundles. In Bonora and Tonin’s construction,”’ it is
essential to impose the vanishing of the curvature compon-
ents whenever a direction corresponding to an anticommut-
ing coordinate does appear, in a similar way to what happens
in the construction of Ref. 4. An attempt to give a mathemat-
ical rigor to the heuristic construction of Ref. 9 has recently
been made, ' but the price to pay was to leave the structure of
the principal fiber bundle and replace it by the ill-defined
structure of the quasifiber bundle. Here we get that math-
ematical rigor in the context of the structure of the principal
superfiber bundle. That is, we build a structure of principal
superfiber bundle whose connection is that heuristically
built in Ref. 9 and where the condition of null curvature
along the anticommuting variables arises in a natural way.

A. General construction

Let X be the space—time manifold (R *, $*4, ---) and G an
n—dimensional internal symmetry compact Lie group. Let
P (X, G)bethe usual principal fiber bundle in gauge theories,
in which the gauge potentials 4, (x) are the components of
the connection projected over X. Let X, bean S “?-superman-
ifold, with A = (@, @, 9, ©; [, I ) and I an countably infinite set
of indices, whose body is the manifold X = 1X,) and such
that a global section 7: X—X, does exist. Let G, be an 5 7%8-
supergroup, with A ' = (1,1,....] ), whose body is G.

Let us consider the following commutative diagram:
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11

X,«—— PX,,G,)

r T

n

X

PX, G,

(that is, r-J/I, = II-7), where

(a) P,(X;, G,)is a principal superfiber bundle with fiber
G,, base space X, and projection /7, whose body is the prin-
cipal bundle P(X, G ).

(b) P(X, G,) is a principal superfiber bundle with fiber
G,, base X, and projection /7, whose body is also P (X, G).

(c) 7 is a superfiber bundle homomorphism: C © and
such that 7R, = R, 7 for all ¢€G;.

Since P (X, G, }is included into P, (X, G.), via the global
section ¢, every homomorphism 7 induces a gauge transfor-
mation 7, through its restriction to P (X, G,). The composi-
tion 74 '.7 is another homomorphism inducing the identity
gauge transformation. We shall restrict ourselves, hereafter,
to this class of homomorphisms.

The class of connections we shall consider in P, will be
the pullback, by the homomorphisms 7, of connections in
P (X, G,). We shall study these connections through families
of 1-forms defined on the respective base spaces. Let us take
a local trivialization {(U;, o,)] in P(X, G,) and the local tri-
vialization {(V}, 0})} in P,(X,, G,), where {U.} is an open
covering of X, V; = r='(U,), o5: V,—II [ (V;} is the pre-
ferred local section in P,(X,, G,), and 0; = 7-0%-1: U,

—IT ~'(U,) a local section in P (X, G,). In this trivialization
the homomorphism 7 is determined by the family y,: ¥, —G,
of G *-functions satisfying the compatibility relations ¥,

= (¢ ,,-r)” 'v.};, where ¥, and i, are the transition func-
tions in the fiber bundles P (X, G,) and P,(X,, G.), respective-
ly, for the above defined trivializations. In particular, we
have ¢,; = ¢}, -t and ¥, = ¥ - '. Furthermore, it is easy to
see that, in this trivialization, the homomorphism 7, given
by vo: = 7,-t: U;—G, istheidentity. In general, the existence
of homomorphism 7 is not a priori guaranteed for any couple
of fiber bundles P (X, G,) and P, (X,, G,). Nevertheless, given
the bundle P (X, G,) with transition functions ¥, we can
build abundle P, (X;, G;) with transition functions ¢}, = ¢,-
satisfying, trivially, the cocycle condition. The homomor-
phism 7 which maps P, into P (X, G, }should be given by the
family of functions y,==e. On the other hand, given two ho-
momorphisms 7 and 7' of P, (X, G,) into P(X, G,), there
exists a gauge transformation a in P,(X,, G.) such that
7' = 1@, with a determined by the family a; = y,~ 7/,
where ¥, and y; are the functions defining 7 and 7', respec-
tively, in a given trivialization.

A connection in P (X, G,)is determined by the family of
I-forms {a, }, defined on U,, satisfying the compatibility re-
lations a; = ¢,@,¥,; + ¥,dy,. The pullback by 7 of this
connection is expressed, likewise, by the family of 1-forms
{a}} defined on V;, where

a; =ad(y,” l)€*ai + v ldyi (5)

with the corresponding compatibility relation.
The curvature corresponding to the connection in
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P(X, G,)is given by the family of 2-forms { R, } defined on U,,
satisfying the compatibility condition R; = ad(; ")R,. On
the other hand, the curvature corresponding to the connec-
tion in P,(X,, G,) is given by the family R { of 2-forms on V,,
where

R;=ady; )r*R,. (6)
Equation (6) shows clearly that the components of the curva-

ture R ; with respect to any odd coordinate vanish identical-
ly due to the presence of the mapping r*.

B. The pullback of a connection in P(X, G)

We shall start from a connection @ in P (X, G ) whose
coefficients are, in a local coordinate system, the gauge fields
A, (x) corresponding to the symmetry group G. Since our
goal will be to build a structure with room for FP fields, we
shall induce, from w, a connection in P (X, G,) and then apply
the mathematical scheme described throughout Sec. ITIA.

Theconnectionin P (X, G,)induced by w is given by r*w.
We can choose locally, with the aid of the inclusion ¢, the
coordinate neighborhood in X, ¥ = U X W, where Uis an
openin R *and W an openin S%%,. Uis chosen to be a
coordinate neighborhood in X and #: U—Vis given by ¢ (x,,)

= (x,,0,0).Since % C %, both  and r*w are expressed, in
these coordinates, by

a; =4, (x)dx*. (7)
(Hereafter we shall suppress, unless explicitly mentioned,
the family index / from all connection and curvature forms.)
Let us remark that, while the coefficients 4, (x) of a general
connection in P (X, G,) should be arbitrary, even elements of
% ; (the connection is an even form in the Grassmann alge-
bra), the coefficients in (7) belong to %, so they are real.

In the local coordinate system we are using, the homo-
morphism 7 is expressed by '’

Yx,, 0, 0) = expl6e(x) + Bc(x) + 66(B (x)

+ 3telx), cx)})], (8)

and the connection w, is obtained by pulling back r*w by 7,
as indicated in Eq. (5), so that it can be written as
a, =¢,(x,0,0)dx* +do5(x,0,0)+dBnx,6,8), (9)
where ¢, (x, 6, ] ) 7ix, 6, ] ), and 7(x, 6, 8, é) are G 2-func-
tions which can be expanded as
.(x,0,8)=A,(x) + 6D,¢(x) + 6D, c(x) + 68(D, B (x)

+ { D, clx), clx)}), (10a)
7x, 6,8) = cfx) — 618 (x) + {clx), Ex)})

— 16 {clx), clx)} + 66 [B (x), c(x)],
x, 6,6)= E(x)_- 160 {E(x)_, clx)}

+ 6B (x) — 60 [B (x), ¢lx)], (10c)
with_D# = 8# + [4,(x), ], the usual covariant derivative,
and B (x) a function of B {x), c(x), and ¢(x) given by the relation

B(x)+B{x) + {elx), &lx)} = 0. (1)
Let us note that ¢, is a % -valued G *-function, where %
= T(G,), is the Lie algebra of G, and also coincides with the
even part of the Lie superalgebra 7,(G,)°. On the other
hand, 7 and 7 are T ,(G,), -valued, the odd part of the Lie

(10b)
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superalgebra. In short, the 1-form «, is even.

Next, we shall discuss the null curvature conditions,
introducing a more compact notation, which will be used
later on. Let us denote by u; the coordinates of ¥, with u;

= x; (1<i<4), us = 6, and u, = 6. In this notation a connec-
tion in P {X,, G,) is written, in ¥, as

a, =du; p;(u), (12)

with p,(u) even for 1<i<4 and odd for i = 5,6. The compon-
ents of its curvature are’®

Fy)=3,p,— (= 1”8, p,+ [ pup]+  (13)
where the symbol [ , ]1_ ([ , ].)means the commutator
(anticommutator) which is used whenever p; and/or p; are
even ( p; and p; are odd).

It is easily proved that the curvature of a,,"? satisfies
the condition F;; = O whenever { orj are equal to 5 or 6. This
condition characterizes the connections in P (X,, G,) com-
ing from a connection in P (X, G, ) through homomorphism .
To give this statement in a more precise way, we shall intro-
duce the following concepts.

Definition I: A local coordinate system in X is called z-
trivial if

tix,)=(x,,0,0).

Definition 2: A connection w, in P, (X, G,) is called
soul-fat if, for any z-trivial local coordinate system, F; =0
for {4, in{5, 6] #0.

Next, we shall state a theorem to give a global charac-
terization of soul-flat connections.

Theorem 1: A connection w, in P, (X, G,) is soul-flat if
and only if there is a connection w in P (X, G,) and a homo-
morphism 7: P,(X,, G,}—P (X, G,) such that o, = 7™*w.

The proof of this theorem will be relegated to Appendix

3

A.

Thus, every soul-flat connection is given, in a ¢-trivial
local coordinate system, by Egs. (10). It is therefore depend-
ing on seven independent fields, 4, {x), c(x), ¢{x), and B {x},
which are interpreted as the gauge potentials, ghost,
antighost, and auxiliary fields, respectively, in agreement
with the heuristic construction of Ref. 9. So it is possible to
have room, inside a geometrical object, for the fundamental
fields which appear in a quantized gauge field theory.

IV. BRS AND ANTI-BRS TRANSFORMATIONS

We shall analyze in this section, using the geometrical
scheme built in Sec. II1, the BRS and anti-BRS
transformations.

The classical action corresponding to a gauge invariant
theory quantized in the covariant gauge d“4,, = B is given
by the expression

S:fd‘*x [ —LFi F _E&#D,c,

—iB°B, +{0"4;)B,]. (14)

As it is well known, although this action is not gauge-
invariant—since the gauge invariance has been broken by
the quantization procedure (gauge fixing + FP term}—it is
indeed invariant under BRS transformations® of the fields

1508 J. Math. Phys., Vol. 23, No. 8, August 1982

84, (x) =D, clx), Sclx) = — i {e(x), c(x)},
(15)

&¢(x) = B(x), 6B(x)=0.

Furthermore, the action (14) is invariant under the anti-BRS
transformations*® of the fields

84, (x) =¢D,clx), 8&x)= — ¢ {clx), ex)},
(16)

be(x)=¢B(x), 8B(x)=0,

where the parameters ¢ and £ are constant odd elements of a
Grassmann algebra. The shape of transformations {15) and
(16) looks like gauge transformations of parameters £c(x) and
£c(x), respectively. This property has been used to introduce
them heuristically in the physical literature. In the following
we shall see that BRS and anti-BRS transformations are re-
presented in our formalism, acting over each connection, by
true gauge transformations of parameters £y(x, 6, 6) and
£nix, 8, 0), the ghost and antighost superfields, respectively.
Let ¢ be the set of connections in P, (X, G.). We de-

fined the transformations 1%, 7}: % —% by

Trlo,) = y@.)[o.], Ti0,)=7w)[o], (17)

where y(w,) and ¥{w,) are gauge transformations in P,
which, in a t-trivial local coordinate system, are expressed by

Yw,) = exp[&n(x, 6, 8)], Flo,) = expl{ijix, 6, 6)].
(18)

Next, we shall restrict the class of superfiber bundles
P (X,, G,) for which Egs. (18) define true gauge transforma-
tions by the following theorem.

Theorem 2: Equations (18) define gauge transforma-
tions in P, (X;, G,) if and only if:

(i) The transition functions of the superfiber bundle
P (X, G,) can be written as

v =g, (19)

in some family of trivializations of P,(X,, G,).
(ii) The base space of the superfiber bundle P, (X,, G,) is

X, =X x5°. (20)

The proof of this theorm will be given in Appendix B.

Let us now verify that the transformations 7z and 7},
introduced in Eq. (17), induce over the physical fields 4, (x),
¢(x), ¢{x), and B (x) the transformation laws given by Egs. (15}
and (16). Let a, be an arbitrary connection in P, given by Eq.
(9), where the superfields ¢, (x, 6, 8),7(x,6,0),and 7(x,0,0)
are arbitrary G *-functions not necessarily given by (10). Us-
ing the transformation law of connections under gauge
transformations,'? we can write

Tila,)=a, + ba, =y~ 'a,y +y~'dy,
(21)

T.(a,)=a, +ba, =7 'a 7+ 7 'dy

or, in terms of the superfields,
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¢, +66, =7 o v +y 3.7
N+ =v""9r + 7" ',
T+ =y 'Y+ 79,7,

Equations (22) read, in the notation of Eq. (12), for the super-
fields p,(u), as

Spiu)= Diz 7,
(23)
5pu)=DsS 7,
where
D, =9+ [Pi» ] (24)

is the covariant derivative along the direction u;.

In particular, for soul-flat connections, that is, ¢,,, 7,
and 7 given by (10), we have for the covariant derivatives (23)
the following results:

D;t g‘nzzaa¢p’ Dp§ﬁ=§36¢u’
Dyln =357, Dyl = £dem, (25)
Daz_"l = 2(9@7_7: Dy = £dq7.

These equations lead, for the physical components 4,,, ¢, C,
and B of the superfields, to the variations given by Egs. (15)
and (16). It is thus proven that the transformations 77 and 7
defined in (17), restricted to soul-flat connections, induce the
BRS and anti-BRS transformations, respectively.

Equations (23) and {25) allow us to recover Bonora and
Tonin’s interpretation® for BRS and anti-BRS transforma-
tions as translations along the directions # and 6 of the super-
space X . Although (25) seems to correspond to infinitesimal
translations, they are really finite translations of parameters
¢and¢ (thisisduetothefactthat{ 2 = £2 = 0), which canbe
expressed as

Tz pilx, 6, é)
=pilx, 6, 6 +Z) =p,lx, 6, 9) +Za@ pilx, 6, 9)

Ep,-(x, 6, é) + 5pi(x) 0) é)’
(26)

T, piix, 6,6)
=p,x, 64+8, a) =pilx, 6, é) +$0 p,ix, 6, é)
=p.lx, 6, 6)+ Spi(x’ o, é]

From (26) it is straightforward to prove that the following
product law holds:

TeTe =Tz
T T, =T ¢ (27)
T,T; =T:T,.
Defining
T(;‘Z»E_T; Tz, Top=T; Ty ET@ (28)

we obtain that the transformation 7|, z, are a representation
of the additive supergroup § °2, with the product law

TezoTez) =T venti v (29)
Thus, we have made clear from the above construction
that, for soul-flat connections, the BRS and anti-BRS trans-
formations generate a global {nonlocal) supergroup with two
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¢;A + S¢/_¢ = 7_/_ l¢y7—/ + 7—/_ lﬁy?’
N+ =y""ny + 7 '%¥, (22)
7+87=7 P+,

I
anticommuting parameters. However, acting over each con-

nection, they coincide with a particular gauge transforma-
tion of parameters £7 and £7. The last discussion cannot be
extended to general connections in P, since (25), and hence
(27), do not hold.

V. CONCLUSION

In this work we have found that a suitable structure for
giving a geometrical interpretation to quantized gauge the-
ories is that of the principal superfiber bundle. Let us remark
that every superfiber bundle is also a fiber bundle in such a
way that the structure of the principal fiber bundle is valu-
able not only for the unquantized, but also for the quantized
gauge theory. Yang—Mills and Faddeev—Popov fields appear
as superfields which are coefficients of a particular kind of
connections in the superfiber bundle—soul-flat connec-
tions—coming from the usual connections in the principal
fiber bundle describing the unquantized theory. The BRS
and anti-BRS transformations are, acting over a given con-
nection, true gauge transformations, in the superfiber bun-
dle, of parameters, the ghost and antighost superfields, re-
spectively, which appear in the particular connection on
which they act. For the case of soul-flat connections the BRS
and anti-BRS transformations are also translations along the
anticommuting variables which act in the base supermani-
fold. Moreover, they generate an S ®*-supergroup.

In short, we see that Bonora and Tonin’s heuristic re-
sults® can be geometrically interpreted within the frame-
work of the theory of principal fiber bundles by means of the
concepts of supermanifold, supergroup, and superfiber bun-
dle lately developed in the literature.''""?

We leave as an open problem, in this work the geometri-
cal interpretation of the Lagrangian of quantized gauge the-
ories, as some invariant of the supergroup S 2, as well as its
relation with the geometrical interpretation given to the La-
grangian of the unquantized gauge theory.

APPENDIX A

In this appendix we shall prove Theorem 1.
(i) A connection in P,, in f-trivial coordinates, can be
expressed as

w, =dx"¢,(x,6,0)+dbn(x, 6,8)+d07ix, 6,6),

(Al)
where
.(x,6,0)=A4,(x) + 6R,(x) + 6R,, (x) + 665, (x),
7(x, 8, 8) = c(x) + 6B (x) + Br{x) + 60s(x),
i(x, 6, 8) = &(x) + OF(x) + OB (x) + 60 5(x). (A2)

The connection «; is soul-flat if and only if the following
relations hold:
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R, (x) = D,c(x), r(x = %{c(x), x)},
7‘ (x}=D,elx), Fx)= —i{clx),clx}}, 3x)= — [B(x),
S#x)=D "B(x {R”(x) 7.

The proof is straightforward,” using the components of the
curvature given by (13). Thus w, only depends on the fields
A, (x), c(x), ¢(x), and B (x).

(ii) If o, = 7*w, from {6) we immediately deduce that w,
is soul-flat.

(it1) Conversely, let w, be soul-flat and let (¢ |, , %, ') and
(6 /., m’, ') be the components of w, with respect to the same
system of ¢-trivial coordinates but for two different triviali-
zations of P, whose transition function ¢73is given by

%(x’ 9’ 9 ) — ealx)ef)b (x) + Bb (x)} + 86(d (x) + | b(x), blx]!/2)’ (A4)

and let the transition function in P (X, G;), ¥;, be given by

Yy = Yot = e (A5)
Let us define the 1-form @ in P (X, G,) by

o, =A) dx* (k=1,)) (A6)
and 7 by

T = Q0K+ B2) + BBB,(x) + [ eulx). T2} /2) (A7)

Then, if @ is a connection in P (X, G,) and 7 a homomor-
phism, the following compatibility conditions must hold:
w; = ad('pij- l)a)i + 1/’1‘]" ! d’/jijs
(A8)
=97
Since w, is a connection in P, (X, G, ), the following compati-
bility conditions must also hold:

o,; = adf}) Yo, + ¥ 4. (A9)
Thus, if w, is soul-flat, by (i) and (A9) we deduce that
A} =e Al e+ e,
t/=e"Te"+b,
B/:eAHBiea_+_d+ [e—a—:ea b ]
It can be straightforwardly proven that Eqgs. (A 10) are equi-

valent to {A8B), so that @ is a connection in P (X, G,)and 7is a
homomorphism. Q.E.D.

c/=e" e + b,
(A10)

APPENDIX B

In this appendix we shall prove Theorem 2 for the case
of BRS transformations y(w, ) = exp[£n(x, 8, 8 )]. The proof
for anti-BRS transformations follows along identical lines.

{i) Let {w, ), given by {18), be a gauge transformation, so
that the compatibility condition

lp’;jil eZ"I, ‘/IZ — eZ"'l/ (Bl)
holds. On the other hand, since 7; and 7; are components of
the connection w_, they must verify the compatibility
condition

n, = ad(Wy W, + ¥ 9515 (B2)
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stx) = [B (x), clx)],

- Al

2, A3

|

Expanding (B1) and using (B2), we get
b—0(d+1i[b,b])=0, Y. (B3)

From (B3) we immediately deduce b = d = 0, and thus Eq.
(19) holds. Q.E.D.

(ii) It is a straightforward calculation to verify that, un-
der a change of coordinates in X, (x, 6, 8 }—{(x', §’, 6 ), the
BRS transformation e?"—e5% 757, where a, and a, are
even functions of the new coordinates (x, 8, 6 ). Only if the
change of coordinatesis 8’ = 6,8’ = 8, do we find e*"—¢°".
In this way, if we want to define BRS transformations as
gauge transformations, we need an atlas for X, where all the
changes of coordinates have the form

0'=6, 6'=80. (B4)
Q.E.D.

X, = X, (%),

But Eq. (B4) is equivalent to Eq. (20).
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not refer to any kind of complex adjunction since we are working with real
Grassmann algebras. Instead, it is related to the ghost number G: If 4 is
any quantity with ghostnumberequaltoN,G (4 ) = N, Awillbereferredto
as an independent quantity such that G (4 ) = — N. In particular, § and 8
indicate independent coordinates with G(6) = 1, G(6) = — 1. The same
can be said about the component fields [AZ) R ¢, r, 5, B and their part-

,,,c,r,s,B where G(R,) = Glc)= —1 G{n=2G(B)=0,
while,G(Ru)_ B =G6F= -1, G(’)——Z,andG(B)=0.

'The use of anticommutators for anticommuting coefficients in (13) needs
some clarification. Although the connection and curvature forms, @, and
1£2,, are even, their coefficients p, and F;; are even or odd, depending on the
grade of u, and u;. In particular, if 4 = 4 “¢,, B= B 1, (¢, being the
matrices of the Lie algebra G ), then the Lie bracket of 4 and B is the
anticommutator (instead of the commutator, as usually), i.e., {4,B }°
=f2A°B°, where f are the structure constants of the Lie algebra G.
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We provide a complete classification of the unitary irreducible representations of the (2 + 1)-
dimensional Poincaré group. We show, in particular, that only two types of “spin” are available
for massless field theories. We also construct generalized Foldy—Wouthuysen transformations
which connect the physical UIR’s with covariant field theories in three dimensions.

PACS numbers: 11.10.Qr, 11.30.Cp, 02.20. + b

I. INTRODUCTION

The complexities of field theory in four dimensions
have very often forced theorists to test models in unphysical
spaces of lower dimension. To our knowledge, however, the
field theoretical foundations of such models have been ob-
tained only by “projection” from the physical dimension.
Such projections, ipso facto, cannot reveal the subtleties in-
herent to a particular dimension. Certainly omniscience,
which is now so often demanded of a theorist, requires the
independent development of theories in their native
dimension.

Because of its proximity to ““reality,” three-dimensional
field theory deserves particular scrutiny. In this paper we
shall examine the group theoretical foundations of any rela-
tivistic field theory in 2 + 1 dimensions.' Such a study re-
veals a theory which mimics very well the structure of its
physical counterpart, and yet it also possesses some rather
startling simplifications.

For instance, we shall show that there are only two
types of massless particles in three dimensions. This circum-
stance implies that the pathology of particles with high spin
may be avoided, and yet it still allows one to make a distinc-
tion between tensor and spinor fields. It is even more surpris-
ing to see how three-dimensional gravity accommodates this
situation.

The recent work of Flato and Fronsdal implies that this
study of three-dimensional field theory may also have direct
physical significance.? These authors have demonstrated the
equivalence between a theory of massless particles in a four-
dimensional de Sitter space and a field theory of two (and
only two) interacting fields on the three-dimensional hyper-
surface at spatial infinity. Indeed, the two massless represen-
tations we found must correspond to these primordial fields.

The work itself is divided into three parts. In the first we
shall examine the underlying group of three-dimensional
space—time. We next provide a complete classification of the
unitary irreducible representations of this group and relate
these UIR’s to the subject of elementary particles. We then
connect the physical UIR’s with their respective field theor-
ies by means of generalized Foldy—Wouthuysen
transformations.

. THE GROUP

The three-dimensional Poincaré group 7 is defined as
the group of real transformations

“This work is supported in part by The National Science Foundation under
Grant No. PHY 78-21502.
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(@A) xt—A Fx¥ + a* (1)
in a 2 + 1 pseudo-Euclidean space which leave

R Rl e e AR A & (2)
invariant. Applying two successive Poincaré transforma-
tions on x, we find

(@A)aA)=1a"+A"a A'A), (3)
which indicates that 7 is, in fact, a semidirect product of the
(2 + 1)-dimensional translation and Lorentz groups:

7= N&L. (4)

The Lorentz subgroup L is the group of transforma-
tions x—Ax leaving x* unchanged. Every such transforma-
tion falls into one of four disjoint sets:

L, '={AeL; detA = + 1, A>0},

L '"={AeL; detA = — 1, A,°>0},
L, '={AeL; detA = + 1, A,° <0},
L ‘={AeL; detA = — 1, A, <O}. ()

We shall henceforth restrict our attentionto L _ ' {and 7 '
= N &L "), remarking only that it is the largest connected
subgroup of L (the other subsets L _ ', L, ‘,and L _ ' are
not connected to the identity).

Wenowrelate L | " to the group SL(2,R ) of real unimo-
dular 2 X 2 matrices. Consider the space .# of real Hermi-
tian matrices with basis {7, }:

T A P A I

With each vector x in our (2 + 1)-dimensional space M, we
can associate a matrix yc.# by the map

x() +xl x2
T M— #—: = xtr = ( , ) 7
— xX—y = X"T, 2 Oy {7)

or vice versa
T~ M —>M: y—x, x*=\Tr(y7,) (8)

Asis almost obvious, the map 7 provides a homeomorphism
between M and .# . Further, noting that

dety = (x°) = (x')* — (x)* = x°, 9)

we infer that a homomorphism should exist between L | '
and any group of automorphisms of .# which leaves dety
invariant. Thus, defining the action

SL(2,R) 2 y—y =0y027" (10)

and checking
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dety ' = (det2 ) (det y ) (detf2 ") = dety, {11)
we conclude

L,'~SL(2,R).

In fact, denoting the “ineffective” subgroup {7, — I'} of
SL(2,R ) by Z, one may verify

L, '=SL2,RY/Z {12)
and so SL(2,R ) is a double covering group of L, "

The translation subgroup N is an additive vector group
and so every unitary irreducible representation (UIR) of N is
of the form

N a—(ap) = explip-a). (13)

It follows that we can characterize the equivalence classes of
UIR’s of N by elements p of the vector space dual to N. We
can also extend the adjoint action of L , " to the dual space ¥
by

(ap) = explip,A*,a") = {a,A ~'p). (14)
Let us associate with each point peN a subset of N
0 = {Ap; AeL '}, (15)

which is appropriately called the “orbit” of 5 in N. Noting
that the elements of L , ' can neither change the value of p?
nor the sign of p, if p?>0, we see that we have six classes of
orbits:

ém T = {peN) pzzmz’ p()>0})

érn = {p€N7 P2 = mz’ P()<0},
é()+ = {pEN; .DZ =0, P()>0}’
O, = {peN: p*=0, p,<0},

éi!ﬂ = {PENa PZ = - mz},

0, =p = (0,0,0). (16)
As the notation suggests (and as our intuition demands), the
elements p correspond to momenta (as the infinitesimal gen-
erators of translations) while the orbits correspond to the
positive energy mass shell, the negative energy mass shell,
the forward light cone, etc.

iIl. IRREDUCIBLE UNITARY REPRESENTATIONS
OF 7. '

The quantum mechanical description of an elementary
particle inevitably entails a linear vector space of physical
states wherein a positive definite inner product is defined.
Invariance of probability amplitudes requires that the sym-
metry operators of such an elementary system (of physical
states) be represented by unitary operators.® Thus the states
themselves, or the wavefunctions which prescribe them,
should carry a unitary representation of the symmetry
group. Further, corresponding to the physical notion of an
elementary particle as an object indivisible, is the require-
ment that this unitary representation be also irreducible.
Therefore, in order to determine the “particle content™ of
three-dimensional field theories, it behooves us to first con-
sider the UIR’s of the three-dimensional Poincaré group.

 Toidentify all the UIR’s of 7, ', we rely on the follow-
ing mathematical result due to Mackey.* Every UIR of a
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group which is of a certain class of semidirect product (to
which 7 " belongs) is induced by a UIR of a stability group
associated with an orbit. The identification of the UIR’s of
7, ' then proceeds as follows:

1. We first classify all orbits O in the dual space of N.

2. From each orbit we select an element 4 and then
determine the orbits associated stability group S;.

3. We identify all the UIR’s of each stability group S;.
By Mackey’s result, this then amounts to a complete classifi-
cation of the UIR’s of 7 '.

4. With each p in each orbit O we associate an element
2 (p)eSL(2,R ) corresponding to a Lorentz transformation
which takes p to the stability point 5.

5. Finally, from each UIR D] ]of each stability group
S5 we form the induced UIR of 7 " given by

Up©(a,A Ju(p) = exp(ip-a)D [2 ~'(p)2,2 (A ~'p)]
Xu(A ~'p), (17)

where (2, is an element of SL(2,R ) corresponding to the ele-
mentAel 'and2 ~'(p)2,02 (A ~'p)eSL(2,R )istobeinter-
preted as its projection on the stability subgroup S;.

The first step of this program was carried out at the end
of the previous section. We shall now proceed to complete
the classification of the UIR’s of 7 ' orbit by orbit.’

On*
In order to discover the associated stability subgroup,
we choose as the stability point p = (m,0,0) and note that the

stability subgroup must be homomorphic to the subgroup of
SL(2,R ) for which

0 0
np.mT:n(m )0T=(m ) (18)
0 m 0 m
This condition implies
nNT=n-! (19)
and so the stability subgroup associated with O,, * is homo-
morphic to O(2), the group of real orthogonal 2 X 2 matrices.

The matrices 2e0(2) may be parametrized by a single vari-
able 6

ﬂgz( cos @

‘ sin 0)‘ 20)
—sin @

cos 6

Since the group O(2) is not simply connected (in fact, it is
infinitely connected), we jump to its universal covering
group R, the additive group of real numbers, in order to
include all the multivalued representations of O(2).

The UIR’s of R are of the form

D’ e JER, (21)
and so we can label the UTR’s of 7, " associated withO,, * by

U™* i, jeR.

P

o

If welet p = ( — m,0,0), we find, ip the same manner as
above, that the stability subgroup for O,, ™ is O(2), and so we
can label the UIR’s associated with this orbit by
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U™ jeR.

a

Oo™*
In this case we take p = (33,0 and then infer that
1 0) r (1 0) N
= , 50 F. 22
2 (o o/ 0 o 5% (22)
This implies that the matrices {2 have the form
+1 a
2= < - ), €R. 23
o +1/ ¢ (23)
Let us parametrize S . by

(mil%=i(l ﬂ, aeR. (24)

0 1
We see that

SOA'0~Z®R7 (25)

where Z is the multiplicative group consisting of two ele-
ments {1, — 1} and R is again the additive group of real
numbers. Z has just two UIR’s (up to equivalence); one is the
trivial representation

D+ 1)=1 (26)
and the other is
D(+1)= + 1L (27)

Recalling the UIR’s of R, we conclude that the UIR’s of
Z ® R are of the form

D =D,*®D;', €=0,1, teR, (28)
and so we can label the induced UIR’s of 7 " by

U+« €=0,1, t=0,

Uyt e=0,1, teR —{0}.
O

Ifweletp = (— %ﬂ, — 1,0), we find, as above, that the

stability subgroup of O, is also Z ® R; hence we can label
the UIR’s associated with O by

UO‘——'E'0 6=0)1’ IZO’
US-< €=0,1, teR —{0}.

a

o)

m

Here we choose p = (0,m,0) and then look for all
£2eSL(2,R ) satisfying

a5 2)ar=(C 2) @

This implies that the 22€S; are of the form

a 0
ﬂz(o a")’ acR — {0} (30)
or that
S5, ~Z®R ™, (31)

where R * is the multiplicative group of positive real num-
bers. Noting that R * is isomorphic to R, we infer that

S5 ~Z®R (32)

and so we can label the UIR’s associated with OA,.,,, by
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t=0
teR — {0}.

U im,e,0
U im,et

€=0,1,
€=0,1,

0,°

This orbit consists of a single point 5 = (0,0,0) and its
stability subgroup is the entire group SL(2,R ). SL(2,R ) has
three series of UIR’s conventionally labeled by:
D¢, geR, e=0,1; D", n=0,1; and D*, O<|p| <1.°
We can therefore associate with 0‘00 three UIR’s of 7 ":

UO%int  geR; €=0,1
Utor  n=0,1,
Ut 0<lpj<l.

In summary we have the following complete classification of
the unitary irreducible representations of 7 ':

U™+7 m>0, p,>0, jeR,

U™~7 m>0, py<0, jeR,

US+<9 m=0, py>0e=01, t=0,

U+ m=0, p,>0, e=0,1, R —{0},
U m=0, p<0, €=0,1, teR — {0},
Ume® pl= _m?’ €=01, =0,

Uumet  p*= —m? €=0,1, teR — {0},

U®%c p=0, oeR, €=0,1l,

U p=0, n=0,1,

U p=0, O<|p|<l. (33)

Note the three classes of positive energy representa-
tions: U™+, U%*+9° and U® *'°. These correspond to,
respectively, massive particles with “spin’’ j, massless parti-
cles with discrete “spin” (of which there are two types), and
massless particles with continuous “‘spin.” We shall reject
the massless continuous spin representations as “unphysi-
cal” since we suspect that, like their four-dimensional coun-
terparts, they cannot be connected with a local field theory
{except, perhaps, in the sense of Iverson and Mack’). In the
final section we shall return to this allegation. We now give
an explicit realization of the physical UIR’s.

U™+

We again choose p = (m,0,0) and £2 (p) to correspond to
the Lorentz rotation in the p-p plane which takes p to p. If
R (0)eSL{2,R ) corresponds to a spatial rotation by an infini-
tesimal angle 6, one finds that

27 (pR(O)2(R"'O)p)=R(6) (34)

while if L (8) corresponds to an infinitesimal Lorentz boost in
the 0 direction, then

2~ (pLO2(L'6)p) =R (bf’i\‘;) (35)

where O Ap = 6,p, — 0,p,. Thus the infinitesimal operators
of rotations and Lorentz boosts are given by

R ™+ 40 Yu(p) = D/(@u(R ~'(8)p) = (1 + ij6 — Gp A\ d)u( p)
(36)
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E+m

{0
= 1—+—1(
( jE+m

L™ {0)u( p) = D,-( o )u(L ~'(Blp)
A ) Epduip. (37)

UO, +.0,0

From Eqgs. (17) and (26) we see that the wavefunctions
belonging to U * *° are scalar fields (since U® * s in-
duced by a trivial representation of the stability subgroup).
Therefore, the operators associated with infinitesimal rota-
tions R (¢ ) and infinitesimal Lorentz boosts L (0) are

RO+0%9) = (1 — Gp ), {38)
[: 0, + '0'0(6) =(1 — E6-9). {39)
UO' i 40

The wavefunctions of this representation are ‘“‘almost”
scalar fields in that the infinitesimal operators R * * 1 (8}
and L ® * '° (0) are identical to (38) and (39). However, under
a finite rotation R (a) one finds that

D, (2 '(p)R (a)2 (R '(a)p)]
B [Dz[l] if 0<a <27, o)

D, —1] if2r<a<inr.

Thus a wavefunction u{ p)eU > * ' transforms as

RO+ (a)u( p)
_ { u(R " '(a) p)

—u(R " (a)p)

if 2r < < 4.

We emphasize that this splitting is not interpretable as heli-
city; rather it corresponds to the double-valuedness of
U+ 19 and so suggests that this representation describes
massless spinor fields.

IV.COVARIANT FIELD THEORIES

The UIR’s found in the previous section provide the
foundation for any relativistic field theory in three dimen-
sions. However, because the individual UIR’s transform in
such diverse and complicated ways, it is very difficult to
introduce interactions between them. Therefore, one instead
begins with “‘covariant” fields, i.e., fields transforming as

(a,A): ¢ (p)—e'?D(A)¢ (A" p), (42)

where D is a finite-dimensional representation of the full Lo-
rentz group (as opposed to some stability subgroup).

These covariant fields are not, in general, irreducible,
and so their prescription must be supplemented with field
equations (and, if necessary, subsidiary conditions) which
remove the unphysical degrees of freedom. One usually then
verifies that the solutions of the field equations provide a
UIR of 7. An alternate approach is to display a suitable
“Foldy—Wouthuysen transformation” which disentangles
the UIR’s lying within a covariant field.
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Finite-dimensional representations of .
Let

10 0 i
=0 —1) T\ o)

H

[

(21 o)

(43)
then we have the following ‘‘Dirac algebra”:
(a/t ,CZ‘, )+ = zg;n"
(au ', )* = - 2ie;l\'2g/‘ {,a/) . (44)
If we define
M, =ii(a,a,)_ (45)
then
(M/n"M/l » ) = l.(gu /IMVA - gvau/l
- g,u/lM,uv + g\'lMp;L )» (46)

which is the Lie algebra of SO(2,1) ~ L , . By exponentiating
this algebra we obtain another (nonunitary) representation
of L " "

S (w)=exp(iw,, M*"") = exp(} iw-a). (47)

The fundamental representation of SO(2,1} is given by
the action of S (w) on a complex spinor

Dp(w): £,—€," = (S (w)), "6, (48)
All other finite-dimensional representations of L can be con-
structed by forming tensor products and direct sums of this
fundamental representation.

For example, let X be a traceless symmetric spinor—
tensor of rank 2, i.e., transforming as

Xah'—’Sa ‘.Sthcd' (49)
We can relate these objects to 3-vectors via
X(lh = x# (au )uCCrb’ (50)

where C is the (charge conjugation) matrix defined by
a,"= —Ca,C"" (51)
and for which
CS"(w)=8""(w)C. (52)
Under a Lorentz transformation
X, =8,S,°X,
=x,5,°S," (a")Ceq

=x,(Sa*CS"),,
=x,(Sa*S 'C),,
=x,(A " (@), Cps (53)
where A is the matrix of the adjoint representation
A*, =1Tr(S 'a*Sa, ) = (A4 7)) ~ (54)

Thus equivalently
x}t_—)A/l VxV (55)

under S (w). Indeed, one may verify that the matrix is exactly
that matrix which we would associate with a Lorentz rota-
tion about the 3-vector w.

Scalar fields

We define a “covariant” scalar field by its Lorentz
transformation properties
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$(p)—d (A~ "p) (56)
and its field equation
(p* —m*¢(p)=0. (57)

Because of their simple transformation properties we can
readily infer that a massive scalar field belongs to U™ **°,
while a massless scalar field belongs to U % %%,

Dirac fields

Let ¢( p) be a covariant field transforming according to
the fundamental representation of SO(2,1)

Y( p)—exp(}iv-a)y(A ~p) (58)
and satisfying
(p-a—mj(p)=0. (59)

We expect, as in the four-dimensional case, that this field is
actually the direct sum of a positive energy and a negative
energy UIR. Therefore, to disentangle these UIR’s, we
search for a Foldy—Wouthuysen (F-W) transformation
which will separate the positive and negative energy
components.

1. Massive case
The operator which diagonalizes the Hamiltonian

H=as p+am (60)
is
U= exp( A i), A =tan _1_|__p_|. (61)
Ipl 2 m

The new Hamiltonian is then
H' =UHU"'= (m*> + p*)la,
1 0
— 2 244 , 62
(m* + p*) (0 _ 1) (62)

and so U succeeds in separating ¢ into positive and negative
energy components:

_(¢7 )
Uy( p) —(¢_(p)), (63)
Hgp *(p) = £ (m* + p*)'¢ *(p). (64)

In order to further specify the nature of the “canonical”
fields ¢ * and ¢ —, we examine the F-W transform of the
operator associated with infinitesimal rotations

R'=URU= exp(ﬁ%)(l +4i6a, — OpAI)
Xexp( - i) (65)
|pl 2

Using this relation

e"de  T=A+(TA)+ (T(TA)) + - (66)
and the fact that

(00 22) = - (pra.22), (67)

| pl | Pl

we find

R'=1+4 }iba,+ 6p-a. (68)

Therefore, the canonical fields transform as
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¢ = (pl>(1£ }i6+6OpAD)S *(p). (69)
Equations (64) and (69) suggest that ¢ * and ¢ ~ belong, re-

spectively, to U™ **and U™ ~ ~* Indeed, if we apply an
inverse F-W transformation to the operator
L=rmrierm—i=(1+ £ 800 _gaed),

m

(70)

we obtain

O:p

L= l—ie-aao—EG-a—g_—E— , (T1)\

which, excluding the last term, is the appropriate “covar-
iant” operator. However, this last term may be removed by
simply redefining the canonical fields as

@ *(p)=E'$ *(p). (72)

Thus, as in four dimensions, the massive Dirac field is a
direct sum of positive energy and negative energy spin-}
UIR’s.

2. Massless case

The operator which diagonalizes the massless Dirac
Hamiltonian

H=qaypa (73)
is
U= exp(l E). (74)
4 {p|
The new Hamiltonian
H'=UHU"'=|pla, (75)

again separates the Dirac field ¢ into positive and negative
energy components

4 0o)
U = ,
vp) (¢ —(p))
Hb *(p)= + plé *(p). %

To determine the transformation properties of the canonical

fields¢ * and ¢ ~, we again examine the canonical version of
R:

(76)

R'=URU™!
= exp(z E)( 1 +1i6a, + 6pA9) exp(_—ﬂ E)
4 |pl 4 |pl
=(14+1iba,+ 6pAd). (78)
Therefore, under an infinitesimal rotation
¢ *(p)>(1£4i60+6pA3)¢ *(p) (79)
However, if we redefine the canonical fields as
P = (p)=(pFp.)¢ *(p) (80)
we have under R
P = (p)—>P =R "' p) (81)
while under finite rotations R (a)
@ (R ! if 0<a <27,
@ i(17)—»{ i( _f’) : , (82)
—PERp) f2r<ca<n

due to the doublevaluedness of the function ( p, FF ip,)'/>.?
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Further, one may verify that

L' =L>""Ye L% "= (1 4+ a,E ©9) (83)
leads to the appropriate covariant operator
L(©)=(1—- |6ua,— EB69). (84)

Thus, we can conclude that @ *eU %+ ' and @ —eU %19,
confirming our suspicion that these double-valued represen-
tations would be connected with massless spinor fields.

Vector fields

As a final example of a covariant field theory in three
dimensions, we now examine covariant vector fields, i.e.,
fields transforming as

A,(p)—>A,4,(A ~'p). (85)

1. Massive case
We begin with a covariant vector field 4 *( p) satisfying
(p*—m4%(p)=0, (86)
paAM(p)=0. (87)

Following the example of the Dirac field, we look for a trans-
formation which will permit an easy separation of the scalar
part [which is anulled by the subsidiary condition (87)] from
the vector field. Therefore, we take our F-W transformation
to be a Lorentz transformation A ~'( p) which takes the mo-
mentum p to its rest frame (m,0,0). We can then define the
canonical vector field as

B.(p)=A"" (pM,(p) (88)
We see that the subsidiary condition implies
By(p)=0. (89)

Apparently, the canonical field transforms as
B(p)—A ~'(p)IL,A(p)B(p)

=A"Y(plAA (A ~'p)B(A " 'p) (90)
or infinitesimally [see Egs. (34) and (35)]

R'(60)B,=L'0)B,=B,=0, (91)

R(0)B,(p) = (6, + €,0 + 5,;6p\I)B;(p), (92)

6Ap

L{0)B;(p)= (5,-1- +€; m — 5{jE6’-¢9)Bj(p). (93)

Thus we may take

B,(p) =Re[®(p)],

By p) =Im[®(p)], (94)
where @ (p)eU™ *-'.

2. Massless case
Let 4 *( p) be a covariant vector field satisfying

p’A*(p)—p'pA¥(p)=0. (95)
Unlike the previous examples, the unphysical degrees of
freedom for this field reside in the gauge freedom of the the-
ory. Therefore, instead of looking for an F-W transforma-
tion which separates the constituent UIR’s, we endeavor to
remove the gauge ambiguity from the field.

If we choose a gauge where the Lorentz condition
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p:A*(p)=0 (96)
is satisfied, we find that 4 *( p) must have the form
A*(p)=p'E(p)+pi(p) (97)

since p, = (0,p,, — p,) is the only 3-vector “perpendicular”
to p besides p itself. The first term p*¢ ( p) is obviously a resid-
ual gauge freedom, and so we conclude that the physical part
of A4 *( p) has but one degree of freedom.

Let us then define ¢ ( p) by

Pud (P)=€,1P"4"(p). (98)
Apparently, ¢ is oblivious to any gauge transformation on
A7, Further, this definition implies both

P'p.d(p)=p€,,p"A*(p)=0 (99)
and

p.PA (p)=p'p,A*(p)= €€, pp4  p)
= €e"“p,p,8(p)
=0. (100)

Thus, in three dimensions we can replace the theory of a
massless vector field with that of a scalar field geU %+,

V. CONCLUSIONS

We have classified all the unitary irreducible represen-
tations of the three-dimensional Poincaré group. Although
the wavefunctions of these representations have only one
component, they are distinguishable by the phase factors
which effect Lorentz transformations (and we have referred
to this phenomena as three-dimensional “spin”). Because the
manifold (in the literary sense) transformation formulae of
these UIR’s would pose a problem in constructing theories
of interacting particles, we have displayed the connection
between the physical UIR’s and (the more wieldy) covariant
field theories in three dimensions.

One might argue that we were too cavalier in choosing
the physical UIR’s and, in particular, in ruling out the case
of massless particles with continuous spin. However, upon
further investigation, this one would find that in any finite-
dimensional representation of SO(2,1) the generator of the
(continuous part of the) stability group of massless particles
is nilpotent. Since nilpotent operators possess only eigenvec-
tors with eigenvalue 0, he should conclude that only the sca-
lar and “‘almost” scalar UIR’s can appear in covariant field
theories.

Massive particles in three dimensions were also seen to
possess a continuous spectra of “spin.”” Even so, only UIR’s
with half-integral spin appeared in our examples of massive
covariant field theories. In fact, since the finite dimensional
representations of L, being constructable from the funda-
mental (spinor) representation of SO(2,1), are at most dou-
ble-valued, we may conclude that only the integral and half-
integral UIR’s are relevant to covariant field theories.

We have seen that although a massive vector field is spin
1, the massless vector field in three dimensions is spin 0. In
four dimensions an analogous situation is exhibited by anti-
symmetric 2-tensor fields.” In fact, in the light of a recent
paper by Aurilia and Takahashi, '’ which treats antisymme-
tric tensor fields as generalizations of Abelian gauge fields,
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this analogy does not seem so coincidental and leads us to
further speculate that a massless antisymmetric 2-tensor
field in three dimensions is nonpropagating.

It can be shown that the two physical massless repre-
sentations are the only UIR’s which have extensions to the
conformal group. In de Sitter space this trait can be taken as
a definition of “massless-ness” since it provides a criterion
which can be applied consistently through the flat space lim-
it (when the background space is curved, “mass” is not so
well defined). This then implies that these two representa-
tions can be identified with the “Di” and “Rac” fields of
Flato and Fronsdal.

There is a school of thought which maintains that the
differences between electromagnetism and gravity are due to
the different spins of their quanta.'’ But in three dimensions
there is really only one spin available (we exclude the massive
and double-valued representations), and so it seems impossi-
ble to accommodate this viewpoint. However, upon further
investigation one finds that in three dimensions the free field
equation R #* = 0 implies that spacetime is flat.'> With the
geometry so fixed, there are no physical degrees of freedom
left for the metric field; therefore, it cannot propagate, and
thus the inconsistency is eliminated.

Note added in proof: The existence and utility of parity
and time reversal in three-dimensional gauge theories were
recently demonstrated by Jackiw and Templeton.'?
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The invariance of the nonlinear Schrédinger equation under the Galilei group is analyzed from
the point of view of the inverse scattering transform. It is shown that this group induces an
infinite-dimensional nonlinear canonical realization which is locally equivalent to a direct
product of the two well-known Galilean actions describing classical particles and the free

Schrodinger equation.

PACS numbers: 11.30.Na

I. INTRODUCTION

Lie group-theoretical methods are an essential tool for
analyzing and interpreting the mathematical models of clas-
sical and quantum mechanics. In this paper we use them in
order to understand the meaning of the nonlinear Schro-
dinger equation

W= — =t —gldl¥, u>0, g>0, (11)

2u
considered as a Galilean-invariant dynamical system. The
quantization of this wave equation leads to an exactly solu-
ble, completely finite, nonrelativistic field theory': nonrelati-
vistic bosons of mass u interacting in pairs via an attractive
S-function potential, in one space dimension. But we are here
interested in (1.1) as a nonlinear partial differential equation
describing a nonrelativistic classical field. Our starting point
is the invariance of (1.1) under the transformations
Ylex) >yt x') = exp[i{ — s uv’t’ + pox’ + C)J(tx),
(1.2)

where
t'=t+b,
are the Galilean transformations in two-dimensional space—

time. As a consequence, (1.2) determines a realization of the
extended Galilei group G whose elements are of the form

g = (6,b,a,v) = exp( — oM Jexp( — bH )exp(af’ )exp(v[? )s
0,b,a,veR , (1.4)
with the composition law

88, =10,+0,+ %vsz +v,a,b, + bya, +a,
+ v,byv, +v,) . (1.5)

Moreover, there is a symplectic structure which permits us
to formulate (1.1) as a Hamiltonian system such that (1.2)
defines a canonical realization of G.

The fundamental ingredient of our analysis is the use of
the inverse scattering transform technique. As is well-
known, after the discovery of this method of resolution for
the Korteweg—deVries equation,” the nonlinear Schrédinger
equation (1.1) was the second physically interesting nonlin-
ear model solved by means of an inverse scattering trans-
form.? In this way, we have at hand a simple complete pic-
ture of (1.1) in terms of the scattering data variables

X'=x+uvt+a (L.3)
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associated with the Zakharov-Shabat spectral problem. We
find that these variables have simple transformation laws
under the Galilei group. It allows us to perform a complete
characterization of (1.1) in terms of well-known Galilean-
invariant systems. Our main resuits are the following:

(1) The structure of the set of scattering data variables
consisting of a discrete and a continuous part leads us to
identify locally the phase space of (1.1) with an infinite-di-
mensional Euclidean space of the form R*" x L %(R). This
local decomposition of the phase space reduces both the evo-
lution law and the Galilei action to a direct product of two
components acting on R*” and L }(R).

(2) The nonlinear Schrédinger equation can be de-
scribed as the composition of two independent dynamical
systems. One of them has a finite-dimensional phase space
and represents a system of free classical particles. The other
one is characterized by a field function ¢ = ¢ (x) evolving
according to the free Schrédinger equation

i¢, = —(1/2u)¢, . (1.6)
It is proved that ¥(x) = ¢ (x) in the linear limit of the inverse
scattering transform.

(3) Under the constraint ¢ = 0, (1.1) reduces to a system
of free classical particles. The dynamical state of such a sys-
tem may be specified in two equivalent ways either as a point
on R*" or as a field function ¢(x). It follows that the corre-
sponding solutions ¥(t,x) of (1.1) are the pure N-soliton solu-
tions. In particular, we obtain that a free particle is described
by a plane wave modulated by a pulse of permanent shape
whose center moves with the free particle trajectory.

(4) We analyze the action of a uniform constant field
over (1.1) by considering the modified equation

, 1
i, = — " Voo — G+ VXN, Vix)=—fox,
(1.7)
where the interaction term is introduced following the quan-
tum-mechanical procedure. It is found that the classical par-
ticles of the model react to the external field as if all of them

should have a mass equal to u. In addition, the field ¢ (x)
evolves now according to the linear Schrédinger equation

g, = — (1/2u)¢x + V(x)$ . (1.8)
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1. THE ACTION OF THE GALILEI GROUP

Let us denote by V the space of initial data for (1.1). We
shall assume that the elements of ¥ are rapidly decaying
smooth functions ¥ = ¥(x). We can think of (1.1) as an infi-
nite-dimensional Hamiltonian system by introducing on the
set of functionals of the form F = F [¢,*] the Poisson
bracket operation

N ® SF, SF, _ SF, OF,
{F ,Fp} =i J‘A . (51/,*()‘) Six)  SYix) 5¢*(x))dx

2.1)
It allows us to write (1.1) in the Hamiltonian form
at¢(x) = {¢(X)’H} ’ at"/’*(x) = {lﬁ*(x)rH} ’ (22)
where
(7 (L, 4
= (5 el = mloax. 23

In this way the evolution law U (¢ ):¢(0)—/(¢ ) associated with
the nonlinear Schriodinger equation is a one-parameter
group of canonical transformations over V.

Let us now consider the action of the extended Galilei
group G. From the active point of view the action (1.2)
becomes

(R (g)¢)(t,x) = explil — vt + pvx + C(g)])
XYt —bx —v(t—b)—a), (2.4)

where C (g), chosen so that R 8:82) = R (g,)ﬁ (g,), is given by
Clg)=plibv* —av +0).

From (2.4) we have that the initial data transform under G in
the form

(R (@)¥)(x) = exp{i[uvx + C(g)]}(U( — b)) x + vb — f;) ,
2.5)

and it determines a realization of G as a group of transforma-
tions over V. The presence of the evolution map U( — b ) in
the definition (2.5) implies that R is a nonlinear realization of
G.

From the physical point of view, if we think of (1.1} as a
Galilean invariant system, the action of the Galilei group
over physical states must reproduce the Galilei group law.
However, the restriction of R to the Galilei group
G={g = (0,b,a,0)eG } is not a true realization of G, but a
realization of G up to a constant phase factor. This means
that two elements of V' differing only in a constant phase
factor must correspond to the same physical state. In addi-
tion, only those functionals F [#,1*] which are invariant un-
der the transformation ¥’ = ¢"* ¢ may represent physical
observables.

The realization R of G is of a canonical character with
respect to the symplectic structure (2.1). Indeed, the vector
fields representing the Lie algebra generators of G are Ha-
miltonian fields of the form

X (M)dx) = (Px.M ), szf Y2 dx, (2.6a)

X(H)dx) = {Ix)H ],

n= " (g - L),
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(2.6b)

Xy = (HP), P= [ w—i), (260

X(R)bix) = (K}, K= —uf Yo dr,
B (2.6d)

where 17:(x) denotes either ¥(x) or ¢¥*(x), and the vector field
X (4 ) corresponding to a given generator of G is defined by

[R(explad )]~ (x) . (2.7)

a=0

X4 i) ==

Thus, we have a representation of the Lie algebra of G in
terms of functionals depending on ¢ and ¥*. One may easily
show the following Poisson bracket relations:

{(MH}={MP}={MK}|={HP}=0,

(2.8)

{HK}=P, {PK}=M,
which reproduce the Lie algebra structure of G. As a conse-
quence, the transformation properties of these functionals
under the passive action (1.2) of G are

M'=M, H =H+ My + P, (2.9a)

P =P+ Mv, K'=K—Mvt—Ma. (2.9b)
Clearly, M, H, and P transform like observables describing,
respectively, the mass, the energy, and the momentum. On
the other hand, Q = — K /M transforms like a position ob-
servable. We note also that a functional F is invariant under
the transformation ¥’ = ¢ ¢ifand only if { F,M } = 0. That
is to say, only those functionals which are in involution with
M may represent observables of (1.1).

ll. THE INVERSE SCATTERING TRANSFORM OF THE
GALILEAN ACTION

A. Canonical variables associated with spectral data

Now we are going to describe a convenient coordinate
system for our infinite-dimensional phase space V. First, we
note that upon performing the transformation

ult,x) = (8/2)"*Y(t,(2u) ~ x) ' (3.1)
Eq. (1.1} becomes
iu, = —u, —2ul’u, (3.2)

which is the standard form of the nonlinear Schrodinger
equation as it appears in the literature about the inverse scat-
tering method.

Given eV we consider the Zakharov-Shabat spectral
problem?®

(e +( L G)=k)r=0.

ulx)=(g/2)"*Y((2u) "' ?x).
Let @ _{k,x) be the Jost solution of (3.3) with the properties

(5 )= othn (a,(,];,le)e) . 3.4

The function a(k ) is analytic in the upper half-plane Imk > 0
anda(k }—>1ask— . Thezerosk, (I = 1,...,N)of alk ) corre-

(3.3)

L. Martinez Alonso 1519



spond to the eigenvalues of (3.1). Each of these zeros &, de-
termines a complex number ¢, such that

0
ikyx f ¢ (35)
X— + Cle

¢—(kl»x) -

Moreover, the following relation holds:
jalk)> + b k)P =1, keR. (3.6)
If we assume that the zeros of a(k ) are simple and that
no zero lies on the real axis, then the inverse scattering the-

ory of (3.3)>* shows that the potential u(x) can be uniquely
recovered from the following set of scattering data:

(kicp,lalk ) arglb(k)]), I=1,..N, keR. (3.7)

In this way, we may characterize every €V in terms of the
scattering data of the spectral problem {3.3). The Poisson
bracket relations of the scattering data, considered as func-
tionals depending on ¢ and ¢*, turn out to be very simple.>®
For our purposes we will find convenient to introduce the
following set of scattering data variables:

;= (24)~"? In|¢,|/2Im{k,} ,

(3.8a)
P, = — 16g7 ' Re{k,}Im{k,},
7, =p" '(argc, + Injc)|-Re{k,}/Im{k,}), (3.8b)
m; = 4g~"(2u)"? Im{k,} ,
glk)=arg[b(—ck]],
plk)= — (mgu)~" In|a( —ck)| , (3.8¢)

where [ = 1,...,N, keR, and the constant ¢ appearing in the
expressions for g(k ) and p(k ) is given by

e=[2(2u)"?)7". (3.9)

As is shown in Appendix A, these variables are such that
(@1,P1), (71,m,), and (g(k ),p(k )) are pairs of canonically conju-
gate variables. That is to say, the Poisson bracket relations
between two of these variables are all zero except for the
following ones:

{q.01}] = {rm. ) =6y , {qlk hplk')) =8k —k’).

(3.10)

B. Galilean generators in terms of scattering data
variables

The canonical variables we have just introduced are
very appropriate for analyzing the Galilean action on the
nonlinear Schriédinger equation (1.1). Indeed, we are going
to show that the functionals defined in (2.6) which generate
the canonical realization of G may be expressed in terms of
these variables in the following form:

M=2m,—+—,uj plk) dk , (3.11a)
! — o
4 g 3) j“’ k?

H=— L —plk)dk,

Z(Zm, 24 + wzyp( )

(3.11b)

P=2p,+J- kp(k) dk , (3.11¢)

Ji — =
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K= —Sma+u| g B

The expressions for M, H, and P are a consequence of the so-
called trace relations®> associated with the Zakharov—Sha-
bat spectral problem. This is based on the fact that the func-
tion In[a(k )] has an asymptotic expansion for large |k |:

dk . (3.11d)

Infalk)] = 3 Ck ", (3.12)
n=1
where the coefficients are given by
C, = __l_z(k;'_k;*")ﬁui.f k"~ 'Infa(k)| dk .
T i s — o
(3.13)

On the other hand, these coeflicients can be expressed as
local functionals depending on the functions » and * arising
in the Zakharov-Shabat spectral problem (3.3). It turns out
that M, H, and P, are proportional to the first three coeffi-
cients of (3.12). Indeed, as was shown by Zakharov and Sha-
bat,* we have

C, = —(i/2)J-w ul dx, (3.14a)
C, = (i/4) jw w¥(—iu,) dx , (3.14b)
Cy= —(i/8) fw (Jug > — |ul*) dx . (3.14¢)

From (3.13), (3.14), and after some elementary operations, it
is straightforward to get the expressions (3.11a), (3.11b), and
(3.11c).

The proof of (3.11d) follows from a different procedure
and it requires the evaluation of the Poisson brackets
between K and the canonical variables (3.8). In order to do
that, we will find the action of pure Galilean transformations
on the scattering data of (3.3). Given y€V, let us denote

Yix)= [R(eXp(vl? ))¥](x) = expliuvx)i(x) (3.15)
and
u'(x)=(g/2)" ¢/ ((2u) "' *x) = expli( p/2)" *ox Ju(x) .
(3.16)

Now, let ¢’ (k,x) be the Jost solution of (3.3) corresponding
to the potential #'(x). Then, one may easily show that the
function

exp[ — i}(2u (3.17)

is the Jost solution @ _ (k 4 1(2u)"/?v,x) of (3.3) correspond-
ing to the initial potential u(x). That is to say, under pure
Galilean transformations, Jost solutions of (3.1} transform as

Y 2uxo,]@ " (k,x)

g_(kx}—p " (kx)
— exp[i§(2/t)'/zvx0'3]¢>,(k + }‘(2#)1/21)’)‘) ) (3.18)
This implies that
a'lk)=alk + 42u)""%), b'lk)=b(k+ 12u) %),
(3.19a)
ki=k — i)', (3.19)

In this way, we deduce at once that the variables (3.8) trans-
form as follows:

¢ =c .
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q9;=¢q;, pi=p;+my, TI=T,—qU, m =m,,
(3.20a)
q'tk)=glk —puv), p'tk)=plk —uv). (3.20b)

e
At this point we use the fact that R(exp(vK )) is a one-param-
eter group of canonical transformations generated by K.
Hence, for every functional F we have

4

dvl,-o
Therefore, by making use of (3.20) and due to the canonical
character of the variables {3.8), we obtain that the functional
K verifies

F'={FK}.

aK aK
— =0, —= —m,, (3.21a)
op, 3, ’

JK aKk
_—=—q,, —=0, 3.21b
am, q ar, ( )
5pik) ok ' bqlk) ok

Obviously, these relations lead to the expression (3.11d) for
K.

C. A new field associated with the continuous
scattering data variables

The continuous part of the system of variables (3.8) is
given by two real functions g(k ) and p(k ) which satisfy

plk)>0, glk)eR {mod27). (3.22)

Moreover, due to the form (2.6a) of M and (3.11a) we have
thatp = p(k )belongstoL '(R). Therefore, we candescribethe
continuous scattering data variables by means of a square
integrable complex function defined as

(k)= — pik)"/>exp[ — iglk)] , (3.23)

or, equivalently, by the inverse Fourier transform of «} given
by

& (x)=(27) 72 f 3 (k) dk . (3.24)

It is elementary to realize that the field ¢ (x), considered as a
functional depending on the initial field functions ¥ and ¥*,
verifies the Poisson bracket relations

{ *x)o (1)} = iblx —y),
{¢(x)g (1)) = [¢*x)g*(»)} =0. (3:25)

Let us now suppose that ¢} becomes infinitesimally
small; in that case we are in the linear limit* of the inverse
scattering transform, and, therefore, there are no bound
states of the spectral problem (3.3). In addition, the potential
u(x) of {3.3) is in the first approximation given by*’

ulx) = ( — 2m)! J_w b* — k/2e™dk . (3.26)

On the other hand, since to first order a(k } = 1 + Sa(k ) and

b (k)= 6b(k), we have also in the first approximation that
Inja(k )| = 4In(1 — [b(k)") = —4lb(K)*. (3.27)

From {3.8c}, (3.23), and (3.27), it follows at once that
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b¥(—k/2)= — (2mgu)"*d( 2u)' k). (3.28)
Inserting this result into (3.26), we get
ulx) = (g/2)'*¢((21) " *x) . (3-29)

That is to say, when i becomes small then in the first approx-
imation #(x) = ¢ (x).

D. Analysis of the Galilean action

We are now ready to analyze the dynamical meaning of
the nonlinear Schrodinger equation (1.1) as seen in terms of
the variables we have just introduced. In this sense it is con-
venient to think of our phase space V as being as infinite-
dimensional manifold and to regard the inverse scattering
transform as defining a chart on V. Suppose we take a given
element 1, of ¥, then in a sufficiently small neighborhood 2
of 1, the number N of eigenvalues corresponding to the spec-
tral problem (3.3) is the same for all ¢ € £2, and hence we can
consider the map

N-R™ XL Z(R) s ¢ = 'I’(x)_*((ql’pl"rl’ml)’ 6= ¢ (X)) s

(3.30)
where ¢ = ¢ (x) is the field defined in (3.24) which character-
izes the continuous scattering data variables. The map (3.30)
identifies V' locally with the infinite-dimensional Euclidean
space R* X L ?(R). That is to say, (3.30) defines a local coor-
dinate system on V. From (3.11), (3.23), and (3.24), we can
immediately write down the expressions of the generators of
the Galilean action in terms of this coordinate system. They
are

M:Zm,+yjj ¢ 12 dx, (3.31a)

pf gz 3) JW 1 2
H=S(LZ & )+ [ Ligax,
;( e[ 5ole

2m,  24u°
(3.31b)
P=zp,+r 6%~ ip,)dx, (3.31¢)
K= —Zm,q, —,uJ.-w & *xd dx . (3.31q)

We note that the symplectic structure (2.1) has a simple form
when expressed in the coordinate system (3.30). It is given by

{FI’FZ}
-5 [(fdhghomy (5 on_or ony)
T dg, dp, dp, dq, dr, dm;  Im, It

(* (_8F, SF, &F, 6F,
+i] (5¢ “x] 56 (x] 54 x) 5 *(x)) o

From (3.31) and (3.32) it follows that in the coordinate
system (3.30) the group action R is a direct product
R=(R,®-~®R,)eR, (3.33)

where the components R,(/ = 1,..,N) act on B* and R © on
L }(R). Each component R, describes a Galilean system
whose states are specified by four coordinates (g,,p,,7,,m;)
which evolve in time according to the equations

QI =pl/m1 ’

(3.32)

=0, (3.34a)
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2 2
+,=_(p’ +£—2m,2), M, =0. (3.34b)
2m?  8u
Under the passive action (1.2) of G, these variables transform
as

gt )=qlt)+vt+a, pilt')=pt’})+mp, (3.353)
Tt =1t) — vg () — Wt — 6, milt')=mr).
(3.35b)

This implies that R, represents a free classical particle which
has position and momentum observables with the correct
Galilean transformation properties. Nevertheless, it is not
an elementary Galilean particle® because the mass m, isnota
parameter but an additional variable in the phase space. The
variable 7, canonically conjugate to m; does not represent
any Galilean observable because it is not in involution with
the total mass observable M. We notice that both the evolu-
tion law and the Galilean transformation law of (¢,,p,,m,)
are independent of 7. That is to say, the presence of 7, in the
space of states does not perturb the physical interpretation of
the remaining variables.

In what concerns the continuous component R ¥, we
see that the expression (3.31b) for the Hamiltonian H and
(3.32) imply that R ‘© describes a Galilean field ¢ = ¢ (x)
evolving according to the free Schrodinger equation

ig, = — (172u)¢, . (3.36)
The form (3.31) for the generators of G implies also that ¢
transforms under the passive action of G in the following
way:
¢'(t'x) = exp{i[ —yuv’t’ +pox' + C(g)]}4 (tx),
(3.37)

which is the same transformation law as the one satisfied by
the field ¢ [see (1.2)].

E. Wave description of the particles arising in the model

An important consequence of the above analysis is the
existence inside the phase space ¥ of finite-dimensional in-
variant submanifolds describing systems of free classical
particles. Indeed, for every integer N > 0 we define V), as the
set of elements eV such that the number of bound states of
the corresponding spectral problem (3.3) is exactly equal to
N, and such that the function ¢ = ¢ {x) vanishes. From (3.30)
we have obviously that locally ¥, ~R*". In this way, the
elements of ¥, may be specified in two equivalent ways,
either by a field function ¢ = ¢{x) or by a point {(g,,p,,7,,m,);
I=1,..,N} of R*". We observe that in terms of scattering
data the condition ¢ = O reads

bik)=0. (3.38)

This means® that the submanifold ¥, is the phase space for
the pure N-soliton solutions of the nonlinear Schrédinger
equation. Therefore, our analysis provides a precise math-
ematical meaning to the similarity between solitons and
particles.®

It is interesting to consider the one-soliton manifold ¥,
which according to our analysis describes a free classical
particle. Suppose an element ¥ ¥, which in the coordinate
system {3.30) is represented by a point (g,p,7,m). By means of
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the inverse scattering transform (see Appendix B) we can
reconstruct i from (g,p,7,m). The result is

Y(x) = — 3g/p)"*m expli( u/m)( px — mt — gp)]

X sech{img(x —q)] . (3.39)

This wave evolves according to

Yitx) = — ig/p)'*m
X exp{i( u/m)lpx — (p*/2m — (8°/8u*ym’)t ]}
xsech{img[x — q{t)]} . (3.40)

This is a plane wave modulated by a pulse of permanent
shape whose center moves exactly with the free particle tra-
jectory ¢(t ) = q{0) + tp/m. Observe that the wavenumber k
and the frequency o of the plane wave factor are related to
the particle variables in the form

k={(u/mp, o=(u/m)|p’/2m—(g*/8u’)m’].
(3.41)

Incidentally, it is worth noting that (3.40) provides us with a
wave description of the classical free particle which reminds
us of the ideas suggested by the de Broglie theory of the
double solution.

IV.INTERACTION WITH A UNIFORM CONSTANT FIELD

Suppose that the action of a uniform constant field on
the system described by the nonlinear Schrédinger equation
is represented by the equation’'"!?

W, = —(1/2u) — Y[+ Vixjp, Vix=—rfox.
(4.1)

It is also a Hamiltonian system with respect to the simplectic
form (2.1). The corresponding Hamiltonian is

H'=H+f Ve =H+ (fyuK, (42)

where H is the Hamiltonian (2.3) for the nonlinear Schro-
dinger equation and X is the functional (2.6d) representing
the generator of pure Galilean transformations. By using the
expressions (3.31b) and (3.31d) for H and X, respectively, we
immediately obtain the form of H ' in terms of the coordinate
system (3.30),

’ 2
H’=2(p_l— gzzm?_&mlql)
T\2m, 24u 7’

< 1
[ (e —rixs %) ax. 43)
—w \2u
Clearly, the equations of motion are now given by

g =pi/my s p=f/um;, (4.4a)

2
+,=—(~p’7+%m%+f—°q,), i =0, (44b)
2m;  8u K

b= — g VRS, Vi=—fix. (440
2u

Curiously, the field ¢ obeys the linear Schrodinger equation
with potential ¥ (x). On the other hand, we observe that, ac-
cording to (4.4a), the acceleration of the particles is

g =Jo/p. (4.5)
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If the force f;, is used to determine the inertial mass of
these particles as the quotient between force and accelera-
tion, we must conclude that all of these particles have a mass
equal to .
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APPENDIX A

In order to prove that the variables (3.8) form a canoni-
cal system we relate them to the variables used by Faddeev,5
which are given by

7, = —Inle;|, & =4Re{k}, (Ala)
B, =arge,, a,=4Im[k}, (A1b)
Qk)=arghlk), Plk)= ——727'_—1n|a(k)l. (Alc)

The relationship between both systems of variables is
9= - 2(2/-‘)_1/2771/0'1 , = —g ‘6, (A2a)
n=p" (B —mb/a), m =) g, (A2b)
glk)=Q(—ck), plk)=(2ug)~'P(~ck). (A2c)
Faddeev proves that (7,,£,), (B.a,), and (Q (k ),P(k)), are

pairs of canonically conjugate variables with respect to the
symplectic structure

R e OF, 6F,  6F, 6F,
tFvF) ——IJ._W((Su*(x) Sulx)  Sulx) 5u*(x))dx A3)

where u = u(x)is the potential of the Zakharov-Shabat spec-
tral problem (3.3). But, due to the relation

ulx) = (g/2)' *Y(2p)~?x) (A4)
we deduce easily that our Poisson bracket (2.1) is related to
that of Faddeev in the form

(FF,} = (2u)'*(g/2){F\.Fy) (A5)

From (A2) and (A5) and since the Faddeev variables are ca-
nonical with respect to { , }', it follows at once that our
variables (3.8) form a canonical system with respect to the
symplectic structure (2.1).

APPENDIX B

In this appendix we want to indicate how (3.39) derives
from the application of the inverse scattering transform. Let
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us consider the Zakharov-Shabat spectral problem (3.3) and
suppose we have a potential ¥ = u(x)suchthatb (k) = 0, then
the explicit form of ¥ = u(x) can be obtained from its scatter-
ing data variables by solving a finite systems of linear alge-
braic equations.? The simplest situation occurs when there is
only one eigenvalue k,. In this case the scattering data re-
duce to the pair of complex numbers (k,,c,) and u(x) is given
by?

ulx) = — 2id *(x)0%(x), (B1)

where

172
A (x)s(ﬁl-) k= q saa(k )
a; Ok k=«

=(2iIm{k,})~",
(B2)

and 6,(x) is determined by means of the following system
A2 e _
2i Im{k,} 2i Imik,}

6, + $=0, 01+ .

(B3)
It is then easy to find that
u(x) = — 2Im{k,}-exp[ — i(2Re{k,}-x + arge,)]
sech[2Im{k,}x — In|c,|] . (B4)

Starting with this formula we get immediately
¥{x) = (2/g)"%u((2)~V/*x) in terms of the variables (g,p,7,m)
related to (k,,c,) through (3.8a) and (3.8b).
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The Taylor theory of toroidal plasma relaxation is considered as a nonlinear eigenvalue problem.
The analysis is rigorous and applies to quite general toroidal cross sections. Emphasis is placed on
the symmetric state case, where the existence of field reversal and flux free states is demonstrated.
Certain anomalies are revealed by the mathematical treatment and their significance is studied.
Existence of a solution to the Taylor problem in the symmetric state is proved and the location of
the eigenvalue of this solution state relative to other states is examined. The question of the

existence of helical states is not resolved, but it is shown that in many respects any helical states
behave like the anomalous cases in the symmetric problem and hence do not significantly affect

the theory.
PACS numbers: 52.55.Gb, 02.30. + g

I. INTRODUCTION

The theory of Taylor'? has given valuable insight in
describing experimentally observed phenomena in plasma
relaxation in a z-pinch. For the most part investigations of
this theory have been confined to a model which replaces the
actual toroidal geometry by a more tractable approximating
cylindrical geometry, although recent work of Reiman? does
consider certain aspects of the theory for a torus of arbitrary
cross section. It is our purpose to investigate a variety of
questions associated with Taylor’s theory from as rigorous a
viewpoint as possible. In so doing we examine only the toroi-
dal case and avoid any discussion of the cylindrical approxi-
mation. This is done, at least in part, because arguments
based on the cylinder predict states which have never been
observed experimentally. It, therefore, seems desirable to ob-
tain as much information as possible about the Taylor theory
in the realistic geometry. We do not succeed in proving or
disproving the existence for the torus of the so-called “heli-
cal” states found in the cylinder. However, we are able to
demonstrate a number of properties of the “‘symmetric”
states which are unexpected. We also discuss the overall ef-
fect that any helical states might have on our results.

In the next section we pose the problem in complete
generality and then discuss both those portions which will
come under detailed investigation and those which remain
items for speculation. Our reasons for emphasizing the sym-
metric states are outlined. In Sec. III we transform the prob-
lem from the customary partial differential equation form to
an integral equation for one component of the B field. The
properties of the solution to this equation and their physical
meanings are discussed in the following two sections, and
important expressions for flux and magnetic energy are der-
ived using just this component. It is observed that the prob-
lem posed in Sec. II can be considered as the “intersection”
of two somewhat easier problems. Each of these is then stu-
died in detail, primarily in Sec. VI. A result of Reiman® is
established in Sec. VII for symmetric states, and the exis-
tence of at least one such state which solves the Taylor Prob-
lem is established in the following section. Several rather
surprising possibilities are revealed.
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Section IX takes up the helical case and is primarily
speculative. We do discuss some consequences of the exis-
tence of such states and call attention to the fact some of the
anomalies they might introduce are somewhat analogous to
the “surprising possibilities” mentioned above. We conclude
with a summary and some suggestions for further research.

While the work of this paper (with the partial exception
of Sec. IX) is mathematically rigorous, we shall avoid exces-
sive mathematical detail, not entering into discussions of le-
gitimacy of interchange of limiting processes and other such
niceties. Ample references are provided for the reader who
may wish to pursue such matters.

{l. STATEMENT OF THE PROBLEM

We consider a torus 7 of arbitrary cross section £2, with
surface 9T which is a perfect conductor. In the theory of
Taylor the following equations must be satisfied (see Appen-
dix I) (we consistently use an overbar to denote a vector):

VXB = uB, (2.1)

BA=0 on 4T, (2.2)

_” B-ndN = F,>0, (2.3)
k]

j ”X BdV=K,>0, (2.4)
s

fZ.aﬁ:AT. (2.5)

In (2.1), B = B (r,z,$ ) (r,2,¢ are cylindrical coordinates;
see Fig. 1), the magnetic field inside 7. The parameter y is to
be determined. (Clearly, B also depends on 4..) Equation (2.2)
follows from the assumption that d7T is a perfect conductor.
The flux condition (2.3) states that the flux through any cross
section {2 must be independent of ¢; that is, independent of
which cross section is considered. Equation (2.4)is the ‘“‘mag-
netic helicity” constraint, 4 being the vector potential. It
may be shown (Appendix A} that for K, >0, only x>0 is of
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FIG. 1. Toroidal geometry.

interest. In (2.5) C; is any closed path lying on 4T which
“encircles” the torus once but does not wrap around it. [For
a physical interpretation of (2.5), see Ref. 3].

According to Taylor the relaxed plasma is associated
with that B field subject to (2.1)(2.5) and having lowest mag-
netic energy.

It is at once clear that (2.1)—{2.5) may or may not have a
solution, though one expects that there is a (finite or infinite)
set of u’s for which a solution does exist. If this is the case
then one can hope to isolate that one (or those) which provide
minimum energy.

Notation: We shall henceforth refer to the problem
posed by (2.1)~(2.5) as TP (Taylor Problem).

Since B (r,z,¢ ) must be periodic in 4 it is natural to at-
tempt a formal expansion,

Blrad)= > Biirae. (2.6)

= — w

Using this expansion and employing (2.3) we get

F,— ,:i e”"Jf B/(r2)7 d02. 2.7)

Since F|, is a constant, only the / = O term can appear in (2.7).
Thus

B/(rznd =0, I+0. (2.8)
/I

That is, the states E are “flux free” for / #£0. These are the
so-called helical states. That state, E,, which contributes all
of the flux, is termed the symmetric state.

The foregoing should be considered as motivation. In
fact, the existence of the helical states has not been estab-
lished. We shall concentrate on B, and prove that TP does
indeed have a solution for B,. We shall also determine many
of its properties. Because all further discussion (until Sec. IX)
will involve this symmetric state we simplify notation and
write simply B instead of B,,.

Equation (2.1) may now be simplified:

—dB, "
aZ =puo,, (293)
0B, 9B, B
Oz ar —H% (2.95)
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FIG. 2. Toroidal cross section.

14

— —(rB,)=uB,, (2.9¢)
r or

where B,, l_?z, B, all functions of just r and z, are the com-
ponents of B.

To understand (2.2) we note that we may study any
cross section §2 we wish. For convenience, we choose that
one in the plane ¢ = 0. Since 72 can have no ¢ component we
write (see Fig. 2)

A=nu, +n,i,, (2.10)
and obtain
Br=nB, +n,B,=0 on dN. (2.11)
From (2.9) this becomes
o, %Be "0 51 0 on an (2.12)
Jz r ar
But
V(rB,) = 9 (rB,)a, + 9 (rB,)a,, (2.13)
ar Jz
so that (2.12) can be written
[n.4, —n,u,]V(rB,)
=1.V(rB,) =0, (2.14)

where 7 is a unit tangent to 3f2. This states that rB, does not
change in the tangential direction, or

B¢ =c/r, (215)

We are now ready to proceed toward a solution of TP
for the symmetric case.

¢ any constant on df2.

lll. TRANSFORMATIONS OF THE 8 PROBLEM

Some trivial manipulations applied to (2.9) result in

FBy, 3(1 3
5 (G e = .
Set
Ylrz)=r'’B,(rz). (3.2)

Then (3.1) becomes
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_ P Py 2
Ly= — - E Zv=uv, (3.3)

Since 7 and z play the role of Cartesian coordinates in the
plane ¢ = constant, (3.3) may be written

Ly= -V 7 ¢ n. (3.4)
The boundary condition (2. 15) becomes
¢ =c/\r on 0. (3.5)

In Sec. V we shall find the form
V[i V(rB¢)} = —u’B, (3.6)
r

useful. Here, and elsewhere in the remainder of this paper, V
is the two-dimensional Cartesian gradient operator.

It is convenient to convert the differential system (3.4),
(3.5) to an integral equation. Set

Ylr,z) = 0 (r,z) + w(rz) (3.7)

and require

LO=u*Y on 02, (3.8a)
6 =0 on d1, (3.8b)
and
Lw =0, (3.9a)
w=-""on . (3.9b)
Vr

The solution to (3.9) is immediate,

w=c/yr on 2. (3.10)
To resolve (3.8) we consider

Lv=g on £, (3.11a)
v=0 on dn. (3.11b)

It is known (see Ref. 4) that for geL,({2 ) the solution to (3.11)
is given by

v(r,z)=f I(rz;r,z)glr,z)dR’, (3.12)

where I is continuous on £2 X £2. Moreover, I"is symmetric,
positive definite, and pointwise positive on £2 — 9f2.
Thus, from (3.8) and (3.10)

Yirz) = % +u? f L(rzr 2Wrz)de’,  (3.13a)
ke

which we shall often write as

¢ 2
=—+puly. 3.13b
4 oy T 4 ( )
Almost all of our work will be based on (2.9), (3.6}, and

(3.13).

{V. SOME PROPERTIES OF THE SOLUTION OF THE
INTEGRAL EQUATION

The structure of (3.13) and the specific properties of I"
allow a rather complete discussion of the properties of its
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solution, many of which have strong implications for the
physics of the original problem. We shall state these with
references to the classical literature.

It is convenient first to consider the corresponding ei-
genfunction problem, writing

Fry (“.1)

From the symmetry and positive definiteness of " we
find (see Refs. 5 and 6):

A. Equation (4.1) has a denumerably infinite set of eigenval-
ues 4 ;, all positive. The corresponding eigenfunctions ¢ ;
may be taken orthonormal on {2. The eigenvalues are of fin-
ite multiplicity. We write 0 <A, <4, _, <-4, <A, and
lim, . A, = 0 and agree that to any 4 ; there correspond
finitely many eigenfunctions ¢!, ¢'%,. z//""’

B. Equation (3.13) is uniquely solvable for ¢ 0 provided
w4 ;7 1forallj. If c20and 4?4 ; = 1 then (3.13) is solvable
if and only if

(,,m c) ” ¢""(rz) 0, @2)

for all eigenfunctions ¢}’ belonging to 4 ;.
The fact that I” (r,z;7',z’) is pointwise positive on {2 — 412
allows us to say more (see Refs. 5 and 7).

C. To A, there corresponds precisely one eigenfunction ¥,
and it may be taken pointwise positive on {2 — df2.

From these properties of the operator I” and its eigen-
functions we obtain:

Theorem 1a: If u* <A ;' then (3.13) withc>0 has a
unique positive solution on 2 — J12.

Proof: When u? < A ;' the solution may be written as a
Neumann series

Y= W + 2 e (‘/r) (4.3)

n=1

The result follows from the pointwise positivity of .

Theorem 1b: If u? = A ;' and ¢50 then (3.13) has no
solution.

Proof: By B and C there can be a solution only if
(¥, ¢/v'r) = 0. Since ¥, >0 on £2 — 412 this is impossible.

Theorem 1c: Ifu? > A ; ', butu®#4 ;7 ',j=2,3,..., then
(3.13) is uniquely solvable for ¢ £ 0 but the solution cannot be
of one sign on 2 — Jf2.

Proof: The unique solvability follows from B. Take the
inner product of ¥ with ¢,:

W) =@, 1/V'r) + i Thy)
=¥, 1/V'r) + 12 W,I )
= c(¥, 1/V'r) + p2A,(4). (4.4)
Here we have used the symmetry of " and the definition of
¥,. From (4.4), and assuming, for convenience, that c is
positive,
(W)l — p°A\] = c¢1,1/v/7)> 0. (4.5)

Now 1 — u?4, <0. Thus (¥,%;) < Oand so ¢, if it is of one sign
on 2 — 412, must be negative. However, ¥ = ¢/v/r on df2
and, by continuity, ¥ must be positive in a neighborhood of
1. This is a contradiction.
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We pause to note the physical significance of these re-
sults. For u?<A4 [ !, the B, component is of one sign, but for
©*>A 1, it cannot be. Thus “field reversal” occurs at the
first eigenvalue A ,.

Theorem 1d: If 4> A ; = 1,j> 1, and for one of the eigen-
functions ¥/¥) we have (%), 1/1/r)50, then (3.13) is solvable
only if ¢ = 0, in which case none of its solutions is of one sign
on {2 —- 1.

Proof: The result follows in part from B. If ¢ = 0 then

Y= Z a ¥, (4.6)
k=1
where the a, are arbitrary constants. Then, by orthogonality
@)= 3 alfy) =0 (4.7)
k=1

Since 3, is of one sign, ¥ cannot be.

Theorem 1e: If x> A; = 1,j> 1, and for all of the eigen-
functions ¥4’ we have (¢“" 1/v/r) =0, then (3.13) is solv-
able for ¢ 0. The solution is not unique. In fact, if 3, is a
solution then so is

Y=1p+ z a ¢y,

k=1

where the a’s are arbitrary. However, ¢ cannot be of one
sign.

Proof. Again ¢ satisfies (3.13) and the proof of Theorem
Ic applies.

We resist the temptation to summarize these results in
one massive theorem. The important physical observation is
that for u*> > A [ ' field reversal always occurs.

V. THE SOLUTION TO TWO “SUBPROBLEMS”

We are now in a position to attack the problem posed in
Sec. 1. To this end we consider two subproblems:

P,: the problem posed by (2.1), (2.2), and (2.3) with no
constraint on the helicity or upon 4,

P,: the problem posed by (2.1), (2,2}, (2.4), and (2.5) with
no constraint on the flux.

We shall eventually find for each of P, and P, an expression
for the total magnetic field energy as a function of . If we
denote these energies by W (1) and Wy, (i), then any value g
such that W (i) = W (i) clearly satisfies both P, and P,,
and hence such fi’s are candidates to solve the minimum
energy problem.

A. Consideration of P,

We first turn to the solution of (3.13) in terms of the
eigenfunctions ¢ ;. It is convenient at this point to reindex
the eigenvalues so that if more than one eigenfunction be-
longstoaA ; thenthat/ ; is repeated with a different index as
often as needed. The eigenfunctions will be similarly
indexed.

We suppose ¢ #0. The unique solution to (3.13) may be
written (see Refs. 5 and 6)

¢ A1V, (’2)
v ,Zl 1— 44,

Ylrz) = (5.1)
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provided u> A ;#1for allj. If u*> A ; = 1 for some j = j,, then
there is no solution to (3.13) unless B of Sec. IV applies. In
our current notation that implies4; =4, ,,

==, ,,_and (1/V7, ¢j)—0,j = Jjo
Jo+ L,-.., jo + m — 1. In that event (5.1) is replaced with

e a AW
Yrz) = - +cp ,;, ey
+Jo+§:— aj‘/}j(r,z). (5.2)

Here the prime indicates that the indices j,,
Jo+ Li...jo+ m — 1 are deleted from the sum, and the a;
are arbitrary constants.
We again modify notation by isolating those subsets of

{4} such that 4, is of m-fold multiplicity and all corre-
sponding eigenfunctions are orthogonal to 1/v/r. We re-
move these subsets from the A ; sequence and call the re-
maining (appropriately reindexed) sequence {4}, with
corresponding eigenfunctions ¢ ;. Equations (5.1) and (5.2)
become

AWV, 2]

=< 2
Yrz) = i P 1 (5.3)
and
_ < 2 = Aj(¢j’1/V’)¢j(rJ)
Iﬁ(rsz)_ ‘/; +Cﬂ j;l 1_#2/1]
+M§: a;y;(rz2). (5.4)

We pause momentarily to comment on our preoccupa-
tion with #, and hence with B,. As we shall see, it is this
component of B which plays the primary role in the theory.
The components B, and B, can be obtained via (2.9). We
shall later need the fact that B, and B, are zerowhenyu = 0,a
result which can easily be established using (5.3) and (5.4).

To find the flux associated with (5.3) and (5.4} note that

Flux = F(u)= H B dQ

=JJB¢d.(2=Lf%dﬂ

= cFyu), (5.5)

where

F1(,U)=J T+ z M (5.6)

j=1 j

The behavior of this function is important in subsequent dis-
cussions. We note that F,(u) is meromorphic in g with simple
poles at u = A~ '/2. Moreover, for >0,

& @1V
Fiw =py L2000
‘ &0 —wA)
Thus F, is an increasing function on any domain in which it
is continuous.
A schematic graph of F(u) is shown in Fig. 3. We note
that F, first becomes infinite at A ;| '/?, which is actually

(5.7)
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FIG. 3. Graph of Fi{u).

A [ /2 (since ¢, cannot be orthogonal to 1/v/r). We also ob-
serve that between A | /> and A ; /2 F(u) has a single sim-
ple zero, denoted p¥. This represents a “flux free state.” In
general an infinite set of A ;’s can be expected, and hence
there are usually infinitely many flux free states, u*, A 7 '/*
<p* <A 7,'{* Itis shown in Appendix B that there is al-
ways one such. These states are also important for the subse-
quent discussion.
As yet we have not imposed the condition of constant

flux [see (2.3)]. In order that

Fu)=F,>0 (5.8)
it is necessary to choose [see (5.6)]
Fy
= = ) 59
¢ =cly) ) (5.9)

Obviously ¢ is not defined at the u*. The physical meaning of
this is clear. There is no way to achieve a nonzero flux at a

flux free state.
We note that throughout this discussion we have sup-

posed ¢#0. In case Theorem 1b or 1d applies we must

choose ¢ = 0. In that event £ = A [~ '"? and
Jo+m—~1
Yrz)= Y  Bitilraz), (5.10)
k= Jjo

where the ¢’s are the eigenfunctions belonging to A, and the
B’s are arbitrary constants. The flux condition becomes

ko +m—1

z B, 1/V/r).

k=

Fy= (5.11)

Since at least one of the terms (¥, ,1/1/7) is not zero, (5.11)
always has a solution. If more than one such term is nonzero,

the solution is not unique.
Finally, we compute the energy in the ¢ component of

the magnetic field,
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-4 fff s
=%f” do JJB 2 rdrdz
= ﬂff ¥’ do.

n

Assuming (5.3) holds

(5.12)

& A ; 11/ AR 2
vi=er [ a1 o5 AtV
P NAES 1—p’A,

{5.13)
which yields, after considerable computation (see Appendix
C),

o A (W, 1V}
ZAM)] =c27r[F ypry L
¢ 1(.” /u j;] (1 _‘quAj)z
=c? Wi lu).
If (5.4) holds then (5.14) must be augmented by a finite
sum

(5.14)

Jo+m—1
2

¢ Yy a (5.15)

.
J=Jo
Since the a ;s are arbitrary, W, can obviously be made arbi-
trarily large (for fixed c)atu =4 ;'
Finally, if (5.10) holds and if more than one term
(¥,1/1/r)is nonzero, then again W, can be made arbitrarily

large.
More will be said about W, in the following section.

This completes our discussion of Problem P,.

B. Consideration of P,

In the discussion of P, it was not necessary to introduce
the vector potential 4. We must now discuss it. The
equations

curl B = uB (5.16a)

and
B=curld (5.16b)
suggest simply taking 4 = B /u. This choice, however, vio-

lates the constraint provided by (2.5).

To overcome this we select

A, =B,/u —c/ur, (5.17a)
A, =B, /u, (5.17b)
A, =B,/u. {5.17¢)

Here we imply the condition 7B, = c on df2 as in the discus-
sion of P,. In (2.5) we first choose C;- as a circle on 7 such

that » and z are constant. Then

2

f Adl =f A,rdd
c, o

27 B
=f [—"—i rdé =0.
0 uour

(5.18)
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Thus the constraint (2.5) is satisfied for this path provided
A, = 0. However, the integral in (5.18) is actually indepen-
dent of (admissable) paths Cr, according to Stokes’ Theorem
for multiply connected regions. Thus, (5.17) is a satisfactory
vector potential. That 4 has been chosen in such a way as to
make the value of the integral in (5.18) zero is no loss of
generality (see Appendices D and I).

We may now calculate the helicity K [see (2.4)].

Ku) = J”F-Z v
[ R f[f

73 21 B
2P if ds H—‘irdrdz
u o r
~ (2}
:M*ZLCFI(‘U) (5.19)
© I
where F,(u) is given by (5.6) and
(5.20)

ﬁ/(,u):%fffﬁde.

It is to be noted that W is the total magnetic energy, not just
the W, contribution. An important relation between W and
W, will be derived in the next section.

Finally, we impose the condition that K () = K, >0,
but note that this yields little information at this point.

VI. THE TOTAL MAGNETIC ENERGY

In this section, we shall compute the total energy W of
the general (symmetric) solution to TP as a function of x.
First let us show that Wis dependent only upon the energy in
the ¢ component of the magnetic field and on the flux.

Theorem2: W () = 2 W, (u) — 7cF (u), where B, = c/7r,
¢ arbitrary, on df2.

Proof: From (3.6), we have

V. -i— V(rB,) = — p2B¢. (6.1)
Now

V~[~1—(rB¢)VrB¢] ~ B, [v- 1 VrB¢] +LvB,v8,.
r r r
(6.2)

Multiply (6.1) by ¢ and integrate over {2 using (6.2) and the
divergence theorem:

— WcF(u) = f £ V(rB,)7 ds
anlt

= Ln B,V(rB,)n ds = J-J V{B,V(rB,)) d2
- jf B, [v- Vi, ]dﬂ
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N J f %(VrBd,)-(VrBd,) an
= —u’ J.J rB3dQ2

1
2 : , 6.3
+ Jﬂf p (VrB,)-(VrB,)dQ2 (6.3)

Now integrate (6.3) with respect to ¢, use (2.9), and note that
dd¢ =drdzdd =(1/r\dV.

f { f( — 2BV + fﬂ(% Vqu,)de
o [ 2o
g

_ _ﬂzfﬂgg,dmfjﬂw%+B§)dV

= QW () — 4W, (). (6.4)

I

— 2meF (1)

If £ #0, we may rearrange (6.4) to achieve the desired
result:

W) = 2W,(u) — mcF (). (6.5)

By (5.14), W,(0) = c7F (0). From the remarks 1mmed1ate1y

following (5.4), B, = B, =0 at x = 0. Thus W(O} w,(0)

= cmF (0),50(5.6)holds aty = 0. This concludes the proof of
Theorem 2.

Now we compute the total energy for each of the two
problems P, and P,. First let us consider P, that is, the flux is
given to be F, > 0. As we have previously mentioned, there is
no solution if 4 = u*. In order to determine the total energy
from (6.5), one must evaluate the constant ¢ and the energy
W,.Ifu* A, #1forallj, thenby (5.9), c = Fy/F,(u). We have
from (5.14) that

_ 2 _ F02W1(/-‘)
Wolt) = W ) = =3 (6.6)
Thus (6. 5) becomes
W) = F (m (2W () — 7F,); 2,1 for all j.

(6.7)

Ifu® A ; = 1, we have two alternatives. The first alterna-
tive, the situation in Theorem le, leads to Eq. (5.2) and the
result that the flux is given by (5.5) again. In this case (5.9)
still applies, but (6.6) must be augmented by the sum [see

(5.15)]
Jo+m—1 )
3 (6.8)
J=lJu
a; arbitrary. Consequently, at such ap = 4 ;7 '/%, the total
energy has a fixed minimum value W, (4 - % 2) and can have

any arbitrary larger value. We note that
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— 172 FZ 1/2 —1/2
)= g (PP = T ),
(6.9)

The second alternative, the situation in Theorem 1d,
1 =A' leads to Eqs. (5.10) and (5.11). The energy W,
associated with this solution is then given by

W)= -;- fff B3dv= % J:” do UB;(r,z)rdrdz

”‘( Jo

Jot+m—1
=7rff¢2dﬂ=1r > B3 (6.10)
J=Jo
subject to (5.11). Consequently, at suchap = A ;' the
total energy has a fixed minimum value W, (4 17 ?) and can

have any arbitrary larger value unless the elgenvalue A, has
multiplicity one. In this case the energy has a unique value.
(Note that, in fact, this is the case at u = A [ '/%). A standard
minimization technique gives the value for W (see Appen-
dix E).

o+ m—1 ~1
,,,(A "2)—217F2{ D (z/:,,l/\/r)zl (6.11)
J=J
From Appendix F, we have
im W) = lim =2 (2 W, () — 7F ()
p—A 12 BA (/‘)
_Wa (6.12)
Finally, we note that [see (5.6) and 6.6)]
~ Fl
W (0) = T J-J- (6.13)

In Fig. 4, we show a schematic graph of W as a function
of u with fixed flux F,,. The graph summarizes the details of
{6.7), {6.9), (6.12), and (6.13).

We have assumed for illustrative purposes that A ’s asso-
ciated with the second alternatives do occur (vertical ar-
rows). Their existence and location depend, of course, on the
specific problem under investigation.

We turn now to the energy in problem P,. We have from
(5.19)

S

2
WFO

F,(0)

|
|
[
|
|
i
1
|
|
|
t
|
|
i
|
I

-l/2

-1/2 172 =
TG VO CN * *

i K2 My p

FIG. 4. Energy with fixed nonzero flux F,,
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W) = K, + mcF (i) =
on d1.

Ifu? A ; # 1 for allj, the ¢ component of the energy is given by
(6.6). From Theorem 2, the total energy is therefore

WK, + mFyu),  (6.14)

c=rB,

Wiu) = W ) — 7F (). (6.15)
Combine (6.14) and (6.15) and solve for ¢? to get

¢ = K[ W) — 7F\ ()] " (6.16)
From (6.15)

B Fiu)

W) = k|1 + — 21 ] (6.17)

U W) — 7Fyw)
If u* A, = 1, we again have two alternatives. The first

alternative, the situation in Theorem le, leads once more to
Eq. (5.2) and the result that the flux is given by (5.5), while the
¢ component of the energy is

Jo+m—1

W, ) =W ) + Z al, a; arbitrary. (6.18)
J=Jo
From Theorem 2, the total energy is thus
o+ m — 1
W () = (W) — mF () + Z a’. (6.19)
i=J
Combine (6.19) and {6.14) to get
2 Jo+m—1 )
22(Whp) — TR+ Y o=k, (6.20)
=

From (5.14), W,(u) — #F,(u)is a positive quantity. From this
fact and (6.20), we see that the possible range of values of ¢ is

0<><WuKo|W, — 7F,] ", (6.21)
It follows from (6.14) that if we set
m = min{iukK,, K[1—+——” 6.22a
e 1 I
and
M= max{%uKo,guKo[l + ”—F'” (6.22b)
AW, — 7F,)
then
m< W (u)<M. (6.23)
It is important to note that
+__L_—_i __Z_l___>i, (6.24)
AW, —aF,) 2  2AW,—uF) 2
so that m>1uK, > 0.

The second alternative, the situation in Theorem 1d,
leads to ¢ = 0, so from (6.14)

W)=k, p=A;" (6.25)

Finally, we require the behav10r of f‘\V(p) asu—0".
From (6.17) we see that

UF () )
W\u) — 7F\(u)
From (5.14) we see that the denominator behaves like u* for
u near zero. Since F,(0) > 0 we obtain

lim W)= lim X0 4 (6.26)
pu—0"

u—0+ 2

lim W)= (6.27)

0+
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FIG. 5. Energy with fixed helicity K,

In Fig. 5, we show a schematic graph of W as a function
of u with fixed helicity K, which summarizes the details
{6.16), (6.19), (6.23), (6.25), and (6.27) of the energy in prob-
lem P,. (We suppose the same locations for “exceptional” A ’s
as in Fig. 4.)

VIl. THE RELATIONSHIP BETWEEN ANY TWO
SOLUTIONS OF TP

Suppose B, and B, are two solutions to TP with
rB,, = c,and rB,; = c, on df). (We shall show in Sec. VIII
that there is at least one solution.} We have [using (2.9)]

— 1) ff j B,-B,dV
=fH[§2.V><§, _B,.VxB,ldV

=2r J-J V-(B, X B,)rd2
7

=27 f rB, X B, 7ids
an

20 (B (BT, ~ By
an

+ Byy(By, 44, — B, 4,)]-nds

= 27rf [-1— rqu,(i VrB2¢)
o0 Ly, r

1,8, (-L VB, ¢)]-Eds
23 r

=2 [ Civp,, ads

an r

27’ J 22 vrB,, -ds. (7.1)
an I

From the flux formula (6.3), we have, assuming that B, and
B, have the same flux F,

=) [ [ [ BBy = pmsses — 2mpireyi 112

Let the total energy associated _Yvith_ﬁl and B, be ﬁ’,
and W, respectively. We have, for B, #B,,
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0<D =-;-jff(§1 — B,)%dV
T
=%”ﬁ793 +B2 28, B)av
T

=W, + W, —fff B,-B,dV. (7.3)
Thus
(4 ——:UZ)(ﬁ/l — W)=, —u.)D

+ 27 ¢ F — 2mpsc Fy.  (1.4)

If we further assume that K is constant, K, we have
from (6.14) that

e, Fy = W b, Ky =12 (7.5)
Substituting (7.5) into (7.4) yields
o — )Wy + W) =, —

+ 20, W, — 2p, W, (7.6)
Hence, if 0<u, <y,
W=l J f f (B, — B,V + W,, (7.7)
2 py i
so that
ﬁfl > ﬁ’z (7.8)

Theorem 3: If B, and B, are two different symmetric
solutions to TP, the one associated with the smaller y is the
one with the smaller energy.

Theorem 3 has been proved by Reiman.? While the ba-
sic ideas of our proof are similar to his, the details are rather
different. Reiman’s result, however, applies also to the non-
symmetric states. (For further comment, see Sec. 9).

Vill. EXISTENCE OF A SOLUTION TO TP

Theorem 4: There exists a symmetric solution to the
problem TP in the interval (O,u¥).

Proof: Consider the two curves W, = (F,2/F 2
X(2W, —7F,),0 <p <p?, represented as the single-valued
part of the first branch of the graph in Fig. 4, and W},
=K [1 + wF /(W, — wF\)], 0 <u <u?, represented as
the single-valued part of the first branch of the graph in Fig.
5. Since both W) and W;; are continuous on 0 <y <u¥, the
function W} — W, is continuous on (0,.¥). Also note that

lim,_,. (W; — Wy )= — 0, while lim y- (W, — W)
H—p

= 4 «, 80 W; — W}, must take the value zero in the inter-

val (O,u%). .

Suppose W, (i) = Wy (i) = 4 If,u A;#1for allj, the
energy uniquely determines the ﬁeld B.To see this note that
Wumquely determines F}/F?} = ¢?, by (6.7). But B is com-
pletely specified by the condition rB, = ¢ on df2. Since
changing the sign of ¢ merely replaces Bby (— B), we may
always assume ¢ > 0. Hence B is determined. Next the flux
must be F, (since B solves P,) and K must have the given
value K, (since B solves P,).
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If 2 A, = 1, we have two alternatives. The first, the
situation in Theorem le, leads to Egs. (6.9) and (6.23). We see
by the discussions that lead to these equations, that in both
problems P, and P,, there is a unique vector B which pro-
vides the solution which lies on the single-valued branch of
the energy curves at this point, namely, the solution found by
setting a; = 0, j,< j< jo, + m — 1, in Eq. (5.15). As before,
this solution has the desired flux and helicity.

The second alternative, the situation in Theorem 1d,
leads to Egs. (6.11) and (6.25). From the discussion preceding
(6.11), there may be more than one solution with the correct
flux and energy W, but since all solutions have ¢ = 0, Eq.
{6.14) shows that they al/ have the desired helicity. This con-
cludes the proof of Theorem 4.

It should be observed that in 7o case have we proved
that there is only one solution to TP in 0 <y < u*.

For further discussion we refer to Appendix G.

IX. HELICAL SOLUTIONS

We return to Sec. II and consider the formal expansion
(2.6). This can be written

B(rz,¢)=Byrz) + B,(rz4), 9.1)

where B, is the symmetric state (we now revert to the original
notation} and B, is a sum of helical states. Note that B, has
the following properties [see (2.8)]:

J f B, -d2 =0, (9.2a)
n
f f J B,B,dV =0, (9.20)
T
B‘h 'dl_: O. (9,2C]
Cr

[Actually, the expansion (2.6) may be bypassed completely
by simply decomposing B into two parts B, and B,, with
properties (9.2). However, (2.6) provides motivation and is
consistent with the literature.]

From (9.2b) it follows that the total energy in the mag-
netic field B is

W=W+w,, (9.3)

where W is the energy in the symmetric state and W), that in
the helical states.

We now point out the modifications to Secs. VI, VII,
and VIII, which are necessary in the event that B contains a
(nonzero) helical part.

Suppose that for 4 = A such a solution exists. It is easily
verified that (6.5) is simply replaced by

WA)=2W,A)—mcFA)+ W,A). (9.4)
Also (6.7) readily becomes

2

F3
W) =— )

RWA)—aFA) + W,(4) (9:3)

and the augmentation by (6.8} is still required in the situation
described.
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FIG. 6. Energy with fixed nonzero flux F;...indicates helical states.

To modify (6.14) we must select an appropriate 4. It is
easy to see that we may choose, assuming A, = 0[see (5.17)]

B, ¢ B

A, = - i

s=— Tt (9.6a)
B,, B,

4, = /1" + 2 : (9.6b)
B B

A, = /‘{’ +——/{’” , (9.6¢)

since (9.2¢) assures that (5.18), and hence (2.5), still hold.
Thus (6.14) is replaced by

W(A)=MK,+ mcF(A). (9.7)
To mimic (6.20) we rewrite (9.7) as
WA)— mcFA) + W, (1) = YK, (9.8)

Since B, is completely unconstrained in Problem P,,
W, (A4)in (9.5) simply adds another spike to Fig. 4 at ux = A.
See Fig. 6.

In problem P, the only constraint is that provided by
(9.8). Hence the argument used to generate (6.23) applies and
the helical solution just adds another segment to Fig. 5 at
u =A.See Fig. 7.

The basic open questions concern the existence, num-
ber, and location of these A values. If the number is finite the
situation differs little from the symmetric case. Even a denu-
merably infinite set of A ’s does not significantly change
things, unless there is an accumulation point at g = 0. It is
conceivable that the A set is nondenumerable. Even that
would not create severe difficulties unless this set has an
accumulation point at g = 0.

It may seem somewhat strange that a discrete set of 4 ’s
is even anticipated. Such a set certainly does not occur in the

W )
w

A_llf2 ng ng PT As H2 As K3 M
FIG. 7. Energy with fixed helicity K, (helical states shown by .....).
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symmetric case. However, the helical case really consists of
solving (2.1) and (2.2) subject to the additional constraint
that F, in (2.3) be replaced by zero. We already have enough
experience with flux-free states to know that they are special.
Indeed, it can be shown that when B is so restricted the curl
operation becomes self-adjoint (Appendix H). While self-ad-
jointness in itself does not assure a discrete spectrum, this
fact suggests that only very particular values of u will solve
the helical problem.

Theorem 3, however, continues to hold. (The consider-
ation in Ref. 3 is not restricted to the symmetric case.) To see
how our proof must be modified we remark that it may be
shown (Appendix H) that if B =B + B! belongs to 12,
and B?=BQ® 4+ B topu,#u, then

fffb‘w-'ﬁ 2qy = 0. (9.9)
T

Thusif B and B ¥ solve TP we have that (7.2} still holds, as
do all subsequent equations through (7.8) provided W is re-
placed by W.

X. SUMMARY AND CONCLUSIONS

We have examined in a rigorous fashion the Taylor
Theory of plasma relaxation in tori with arbitrary smooth
cross sections. Primary focus has been on the symmetric
case, and a quite complete understanding of field-reversal
and flux-free states has been achieved. The existence of a
solution to the Taylor problem has been demonstrated in a
torus, and the location of this solution has been isolated.

The helical states have not yielded to our methods.
There is increasing numerical evidence that these states do,
indeed, exist, at least for certain cross sections.® We have
shown, however, that at any (possible) helical state the be-
havior of the plasma system is not significantly different
from that found in the symmetric case. However, we believe

it important to resolve the open question of the existence of
helical states.
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APPENDIX A

Theorem A-1: If K, is positive then there are no solu-
tions to TP for u<0.

Proof: By (9.7)
WK, = Wiy) — mcF(u)
> W) — meF (1)
= A(Wlu) — mF (k). (Al)

But {5.14) shows the last expression to be positive and the
result is immediate.
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APPENDIX B

We consider the assertion (Sec. V) that there is always a
zero-flux state. There is surely always one unless

A, = A, = - = 0. From (5.6) we obtain in this event
2 2
FW)ZCJJQ cu Al(%zl/\/r) B1)
r 1 —uA,
n

A zero of F (u) occurs if

[[ 22 =wa, j 9 _ 1| (B2

r
£

The only problem that arises is that the coefficient of wA,
might be nonpositive.

To see that this cannot happen we use the Schwarz
inequality

W VR = “ Y 4o
e
=J ,}J g. (B3)

Moreover, the strict inequality holds in (B3) unless ¢,
= k /4/r for some constant & and for all (r,zjef2. But we
know that k /1/r cannot be an eigenfunction since it fails to
vanish on o£2.
We conclude that the coefficient of A | in (B2) is posi-
tive and u¥ exists.

APPENDIX C

We present here the details of the calculations leading
to (5.14). From (5.13)

2
W,u) = c*m fJ- a2 + 27 Z} l/}]’l//r)

A A 1V N 1V
(1 —p4,)(1 — p?Ay)

+ﬂ22

XJ‘fgllj;l'kdﬂ
=c 7TF(/£)+C Z_M
+ e Z_@LI%Z)L_ (C1)

Here we have used (5.6) and the orthonormality of the ¢s.
Next we note

A; 2p 2 A,
jz £ 2j 2 12 2 (C2)
1—p'A; (1-pA)) (1—p4))
From (C1),
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1,/11,1/\/r)2

W, =cnFu)+cu 2%——— (C3)
j=1 A )
as in (5.14).
APPENDIX D
Suppose
21
J A,,rd¢=J Adl=A,, (D1}
0 Cyp

a constant independent of . We may satisfy this constraint
with

4 By ¢  Ar 1 9y
g T T TS o
u our 2mr  r 9¢
B
A =" _al_,
7 or
B,
Az: +iX_, (D2)
y2’ dz

where y is any single valued function independent of 2 on T,
and still have

Vx4 =B. (D3)
However, now (see 5.19)

K= ZVZV‘) _ 2R R A, (D4
Since cF\(u) = F(u), this can be written

K () — 27F (), = 2";"“) z”C;F'V‘). (D5)

When the flux F () = F;and the helicity X (4) = K are fixed
for a given A, the solutions to TP are precisely the same as
the solutions to the TP in the text (with the assumption

A, = 0), provided the helicity is taken to be

Ko — 27Fod . (D6)

This shows that the solution to TP is not unique for given K,
and F, unless A, is given.

However, the overall qualitative behaviors discovered
for B, W, etc., are not changed. In practice, if K, and A are
given one simply defines a new K, K, by

K,=K,—2rFA; (D7)

and proceeds as in the body of the paper, using IE’O and (5.18).
If K, < O then only negative z’s will occur (see Appendix A).

One might worry that further changes in the definition
of 4 could lead to new phenomena. Consider any two vector
potentials 4, and 4, which lead to the same B and which
satisfy (D1). Let

V=4,—4, (D8)
so that

Vx¥V=0 (D9)
and

Vdl=0 (D10)
Cr

Then

V=Vé (D11)
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on T. Now

f Vé-dl =0,
Cy

$0 ¢ is single valued on T by Stokes’s Theorem for multiply
connected regions. Thus all solutions to (D1) and (D3) are
given by (D2). Hence all results of the main text are un-
changed if K, is replaced by K,,.

(D12)

APPENDIX E
Theorem E-1: The minimum of the function [see (6.10)]
W)= 2W, ) = 27 i_ B2 (E1)
subject to the constraint T
Jo+m—1
2 B /vn= (E2)
is giveljl bj;
W =2nF,) E— ] (E3)
Proof: We wisljl vt:) minimize
Fp,) = i x> (E4)
subject to .
‘il ax, =c. (ES)
We fo;m

zx +A<Eax—c) (E6)

i=1 i=1

and find its minimum. Equating partial derivatives to 0
yields

2x, +Aa;, =0, i=12,..,n

i ax; =c. (E7)
Thusl:-lz — 14a, so

U Z a’=c. (E8)
This gives, N

x,=ac/S a? (E9)

=

and

z X, —cz/z a’ (E10)

i=1 i=1
The result in the theorem follows by direct substitution.

APPENDIX F

To verify Eq. (6.12), we recall (5.6) and (5.14). Clearly
F,(u) and W,(u) are meromorphic functions with poles at
p = A ;' The flux has poles of order one at those points
while the energy has poles of order 2. Nearu = A | /> we
may write
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Jo+m—1
wiw=mea,” 3 wavient—a, )
~j=jo
X {1+ W)} (F1)
and
1, P& 2 2
R = [, Wy - )|
j=Jo
X {1+ Fp)}, (F2)
where W, and F, are analytic neary = A ;- /> and with zeros
there. Thus,
w 2W () — 7F
() = Flz(/tz) ( 1(#)1 1)) |
Jo+m— -
=S v s,
waA;, L =,
(F3)
where ¢ ()0 as u—>A ;7. The result is immediate.
APPENDIX G

We may explore the situation further by trying to find
the solution to TP with least energy, that is, least u by
Theorem 3. The only ditﬁculty that may arise comes when
the two energy curves W and WII intersect along the
“spike” that may rise from the W curveatd ; V2 (IfA ;12
lies to the right of ¥ or if Wl and W,, have a previous pomt
of intersection, this is of no consequence.) The problem oc-
curs because of the need to find a single solution with energy
W which solves both P, and P, at this . The relevant equa-
tions are (4.6), (4.8), (6.8), (6.9), (6.20), and (6.21). We need
only find a set of & ;s to satisfy (6.20). This will be possible if

F 2
WKo>2AHW, —1rF,)=27:°—2(W1 —7F)). (G])
1
Note from (6.23) that the W, curve and W}, will have a pre-
vious intersection unless

W, (A5 )<k, [1 + (G2)

_7_]
AW, —F,) 1
since F, <0 between A, and u¥. (This expresses the fact that
the W\, curve must lie above the single-valued part of the W
curve between 0 and 4 , /2.) Using (6.9), (G2) becomes
2W, — oF, ]
oW, —7F) I
which reduces to {(G1). We have thus proved

Theorem G-1: The solution to TP with the least energy
can be found at that g at which W, and W,; have their first
intersection and, although the solution may not be unique,
the value of 7B, = c is unique and the total energy of any
solution is given by

W (u) = WK, + mcF,. (G4)

Lo 0w, ~ aF)<uk,| G3)
1

APPENDIX H
Lemma H-1: If B, and B, are flux-free, then

f f B, X B,-ndS = 0. (H1)
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Proof: Since V X B-#i = 0 on dT, we may write
B=VyondT. (H2)

Now let #, be the unit vector on T in the poloidal direction,
u, the unit vector in the toroidal direction. Then

ij Badl =L E-di:iIJVXﬁ-a¢dl
u e, 4 Joa .

_ j f Bd0 = Flu) (H3)

and
L Bagdl=—- fch,qﬁ-—ﬂ (H4)
i

where B¢ = c/ris the value of the ¢ component of the sym-
metric part of B on the boundary of 7. [Note that no other
components of B contribute to (H4) (see (2.6))]. Let

where y is as in (H2) and r is the coordinate associated with
@, . Then

f Vo-u,dl =0 (H6)
C,
?
and
j Vo-ddl = 0. (H7)
Cr
Thus @ is periodic in 7 and 6.
We have
B=puVo + Fz—(") Vr+cVé on 4T (HS)
T
Hence,
B,XB, = p .V, X Vo, + [F’cz - &] i,. (H9)
27 27

IfF,=F,=0,

f f (B, xBy)7dS =— f J Vo, X Vo, 7dS
ar ﬂIILZ T

Jj V-V, XVao,dV =0,

s
(H10)
since V-V, X Vw, = 0. This establishes (H1).

Theorem H-1: The curl operator is self-adjoint when
restricted to flux-free states. In other words,

”j [B,-VXB,—B,VXB,1dV=0 (H11)
if B, and B, are flux-free.

Proof: We use

VB, xB,) = B,-VXB, — B,-VxB,. (H12)
Thus
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” (B;-VXB, — B,-VXB,ldV
T
= J f V(B,xB,dV
T

= f fﬁzxﬁ,.ﬁds
ar

=0 (H13)
by the lemma.

Corollary H-1: Flux-free states belonging to different
A’s are orthogonal. In other words,

J J f§1-§2dV=O
T

if B, and B, are flux-free and satisfy VX B, = 4,B, with

Proof: From the theorem and V XB, = A,B,,

J ”(,12791-?2 — AB,B,)dV =0.

(H14)

(H15)

Thus

(A, — A ,)f”?,.EZdV =0.

Corollary H-2: If B{" and B ? are helical solutions be-
longing to different eigenvalues, then

” j B\-BPdy =0.

T
Proof: All helical states are flux-free, and the theorem
applies.

(H16)

(H17)

APPENDIX |

In this final Appendix, we give an abbreviated derivation
of the Taylor Problem, primarily due to Baker.® The presen-
tation clarifies somewhat the results of Appendix D.

We seek the magnetic field B of a plasma inside a per-
fectly conducting toroidal shell. Woltjer'® has shown that

‘;—f = —JIIE-BdV, (I1)

where

K= UJ. A-Bav. (12)

Since E is 0 inside a perfect conductor, we have

9F _ ifjﬁ-ﬁ,,, dan
ot ot
2

- J.JVXE-L, dn = — f Edi=0 (13)
o P
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and

5t 5t CT

=i”1‘;.ﬁds
at
H

= —HVXE.MS: —f Edl=0,
H CT

where H is any surface spanning C. Now inside the con-
ducting shell B = VX E = 0. Since B-71 is continuous (Ref.
11, p. 16), we have

Bn=0 atdT. (I5)

Finally, Taylor* and Montgomery and Turner'? have
reasoned that 3W /3t is much greater than dK /9t (see also
Ref.13 for further discussion). Because of this, Taylor? has
made the assumption that

IK _

—37 =\,
while W relaxes to the minimum energy:

W = min ” f B-Bd4V. (17)
T

This leads us to the mathematical model which mini-
mizes W subject to

oA o _
T _ 9 4= %”vxm ds (14)
H

(I6)

K given,
F given, TP1
A, given, ( )
Bin=0 at dT.
A Lagrange multiplier argument leads to the problem
of minimizing W subject to
(VX B =uB,
K given,
{ F given, (TP2)
Ay given,
(B =0 at J7.
We have shown in Appendix D that minimizing W subject to
(VX B = yE,
K — .
) .21rATF given, (TP3)
F given,
(B =0 at 3T
has solutions which correspond to those of TP2. In fact,
Taylor'® has now proposed that K — 274 .F be the new de-
finition of helicity. [This definition of helicity makes the so-
lution of (TP1) independent of the choice of 4 ].
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Finite sum approximations to Brillouin zone integrals with symmetrized plane

waves
N. O. Folland and Junaidah Osman®

Physics Department, Kansas State University, Manhattan, Kansas 66506

(Received 30 June 1981; accepted for publication 2 April 1982)

Techniques are presented for expanding a periodic function of cubic translational symmetry and
arbitrary rotational symmetry in a finite set of symmetry-adapted plane waves. Results for all
cubic lattices are tabulated in a form convenient for use in computation. The role of “special
points” in the sense of Chadi and Cohen is discussed in the extended context of symmetry-adapted

plane waves.

PACS numbers: 71.10. + x, 02.20. + b, 02.30.Mv

. INTRODUCTION

The basic idea for a finite sum approximation (FSA) of
an integral over a finite region of space is to partition the
space into identical volume elements and approximate the
integral by a sum. Each term in the sum is the integrand
evaluated at the center of a volume element multiplied by the
volume element. If all volume elements approach zero in a
limiting sense, then the resulting sum is a Riemann integral.
The natural partition of a symmetric space into identical
volume elements puts the center of the space at the center of
a volume element. Suppose we partition the space by displac-
ing all volume elements in the same way? Will anything be
basically different? The answer, in certain circumstances can
be dramatically, “yes!” The “certain circumstances’ that are
of interest here are when the integrand is invariant to opera-
tions of a point group. In such a case because of the symme-
try, itis possible to use a significantly fewer number of points
(equal volume elements), to approximate an integral when
these points are positioned optimumly, than to simply place
them so the center of the space is at the center of a volume
element.

As a simple example, consider an integral of a periodic
function where the finite region of space is a cube and the
function is invariant with respect to each of the 48 cubic
point group operations about the center of the cube. Now
divide the cube into identical little cubes such that one little
cube is centered about the origin and such that cubic point
group operations leave the partition unaffected. Also require
this partition to be such that if a volume element intersects
the surface, then its center falls on the surface. Because of the
point group symmetry the cube may also be partitioned into
48 symmetry-related volumes referred to as irreducible
wedges (IW). Thus, using the symmetry an FSA can be ex-
pressed as 48 times a sum of terms consisting of the function
evaluated at centers of volume elements which lie inside or
on the surface of the IW multiplied by (weighted by) the
fraction of the volume element contained inside the IW.
Now, suppose all volume elements (points) are displaced by
the same vector, but in such a way that the resulting set of

* Present address: Physics Department, Universiti Sains Malaysia, Minden,
Penang, Maylaysia.
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points are invariant to cubic point group operations. The
only way that this can be done is to displace all the original
points by a vector which connects the center of a little cube to
a corner. In this process all the points which originally fell
inside or on the internal surfaces of the IW remain inside or
on the internal surfaces. Points which originally fell on the
external surface of the IW are now completely outside the
IW in that their volume elements are completely excluded
from the IW. Thus, in the case where the original volume
partition places points on the external surface of the IW an
FSA with the displaced points will involve fewer points than
the original FSA. When the original volume partition places
no points on the surface, then the original and displaced FSA
involve exactly as many points in the IW. The procedure
above may easily be extended to integrals over face-centered
cubic (fcc) and body-centered cubic (bce) symmetric regions
of space. In all cases the effect, if any, of symmetrically dis-
placing the volume elements is a surface effect. The dis-
placed point FSA’s described above are exactly the “special
points” of Chadi and Cohen." It is noteworthy that periodic-
ity has no role in the preceding discussion.

In a previous paper? (hereafter referred to as I) an equi-
valent but different perspective as compared to the above
discussion on FSA’s was emphasized. Although this is quite
arbitrary, for historical reasons the integration is taken to be
in a reciprocal space or k-space and the volume of integra-
tion is the symmetric, Brillouin zone {(BZ) in k-space. Now a
periodic function, f (k) = f(k + K), where K is any member of
a reciprocal lattice, can be expanded in Fourier series or in
terms of an infinite set of orthogonal plane waves of the form,
exp(/k-R), where space lattice vectors R satisfy the property
exp(/k‘R) = 1. A BZ integral is directly related to the coeffi-
cient of the plane wave with R = 0. Ifan FSA is made to a BZ
integral, then the corresponding Fourier series is truncated
to a finite series. For FSA’s corresponding to symmetrically
partitioned BZ’s, the number of R-vectors or planes waves
which are inequivalent with respect to the FSA is exactly
equal to the total number of points (or volume elements) into
which the BZ is partitioned. For FSA’s corresponding to
nonsymmetrical displacements which are then symme-
trized, the number of inequivalent plane waves as deter-
mined by the FSA is less than the number of points. Just as
inequivalent k-vectors may be specified by a BZ, inequiva-
lent R-vectors with respect to an FSA may be specified by a
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symmetric zone in real space. When considering periodic
functions f (k) defined on the BZ which are invariant with
respect to cubic point group operations, the plane waves may
be reexpressed in terms of linear combinations which are
invariant to the group operations. In the case of the example
described in the preceding paragraph, both the FSA based
on the symmetrically placed points including the origin and
the corresponding FSA in which these points are symmetri-
cally displaced the zone of inequivalent R vectors is exactly
the same for each. The surface effect described above mani-
fests itself in this case by the fact that all symmetrized linear
combinations of plane waves formed from R vectors on the
surface of the zone in R-space are identically zero when eval-
uated with respect to any point of the displaced FSA. For
more details in this context the reader is referred to I. This
surface effect must manifest itself for other symmetries be-
sides the identity representation. The primary objective of
the present work is to analyze completely these surface ef-
fects for periodic functions of arbitrary point symmetry.

One feature of the present work is to treat all FSA’s on
the same basis. A consequent practical observation, which is
emphasized in Sec. IV, is that FSA’s of comparable accuracy
provide an estimate of the error. However, to treat all FSA’s
in the same manner requires a notation which precisely and
compactly specifies all finite sets of points. The notation of I
will be retained in this application. The notation is summar-
ized in the next few paragraphs below for completeness.
Then, the general results, Eq. (18) of I and Eq. (1) of this
paper, will be stated in this notation. Note that the notation
is designed to facilitate immediate implementation into a
computer code. Also, the tables with their captions summa-
rize the definitions and results which are needed to program
the technique.

The basic idea for specifying finite point sets embodies
the notion of an infinite, regular array of points from which a
finite number are selected by including only those points
contained in a region of space. Three steps are involved. (1)
Define an infinite set of points; symbolize such a set by g. (2)
Define a region of space or zone; let z symbolize such a zone.
Then, (3) g(z) symbolizes the set of all points g which are
contained inside and on the surface of zone z. It is also neces-
sary to distinguish between points in k-space and real space.
This is done by symbolizing k-space points or point vectors
and zones with lower case symbols and real space points and
zones with upper case symbols. Point sets are defined in Ta-
ble IA and zones in Table IB in terms of points and zones in a
dimensionless space. All point sets and zones defined here
are invariant to cubic point group operations. Actual space
vectors are obtained from the dimensionless point vectors by
attaching the unit a/2, where q is the lattice constant for a
conventional cube. Similarly, k-vectors are obtained from
the dimensionless point vectors by attaching the unit 277/ Na,
where N is a positive integer which specifies a zone.

For example, the space lattice point.S defined by this
notation consists of all space vectors of the form 2(i,j,k Ja/2,
where i,j,k are any integers or zero. S is just a simple cubic
lattice of space vectors. The symbol S (F,,) specifies the finite
set of simple cubic lattice vectors contained in the face-cen-
tered cubic zone F), . To explicitly obtain these points, one
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TABLE I. Definitions of finite sets of vectors.®

A. Definitions of infinite sets of vectors.®

u=25={(22j,2k!}

eu = ES = {2/ + 1,2,2k)}u{(2i,2f + 1,2k )}u{(2i,2],2k + 1)} .
bu = FS = {{2i,2j + 1,2k + 1)}uf(2i + 1,2,2k + 1}Juf(2i + 1,2j + 1,2k)}
Su=BS = {(2i + 1,2j + 1,2k + 1}};5 = uveusbuuf

b = F = wobu;f = B = uJfu;feu = fuveu

beu = bulUeu

B. Zonal restrictions, a point (i,/,k ) is contained in the 1/48th zone wedge if
integer or zero values of indices i,k satisfy the condition /> j>k>0 and

k-vector space vector

BZ (symbol) zone (symbol) Condition(s)

sc (Sy) sc (Sy) 2iKN

bee (by) fee (Fy) i+ J<N

fee (f) bee (By) i<Nand 2{i +j + k)<3N

* In specifying vectors, upper case symbols are associated with space lattice
vectors and lower case symbols are associated with k-vectors. Actual space
vectors R are formed from a dimensionless vector (i,/,k ) by assigning to it the
unit a/2, where a is the lattice constant for the conventional cube,

R = (iy,k Ja/2. Actual k-vectors k are formed from dimensionless vectors

(¢4,k )by assigning the unit 277/Na, k = (iyj,k )27/ Na. The same symbols that
are used to define sets of dimensionless vectors will be used for space vectors
and k-vectors. Zonal restrictions are specified in terms of the 1/48th zone

wedge or irreducible wedge. The remaining vectors (points) in the zone are
generated by the 48 operations of the cubic group. A restricted set of points
gl(z) is denoted by the symbol for the infinite set of points, g, with the zonal
restrictions z, in parentheses. For example, fu(b, ) specifies the finite set of
k-vectors contained in zone by,.

®Indices #,,k of vectors may take all integer and zero values. The symbol U
indicates a union of sets.

must first find all points in the 1/48th zone wedge where
2i»>2j>3k>0 and 2/ + 2j>N and then add to these all addi-
tional points which may be obtained by applying the 48 cubic
point group rotations. Thus, S, F, and B are the usual sc, fcc,
and bcc space lattices, respectively, while BS and FS are
point sets containing only body-centered and face-centered
space vectors, respectively. The space vectors contained in
ES are “edge” vectors and are not contained in any cubic
space lattice. The symbols NS, NF, etc., simply mean that all
space vectors in S, F, etc., are scaled by the positive integer
N. It is useful to note that zones S, y,Fy, and B, are “primi-
tive” cells for lattices, NS, NF, and NB, respectively.

In the case of k-vectors the unit 277/Na is associated
with the zone delimiting index V. The resulting zones s,,b,,,
and f, in k-space are symmetric cell BZ’s. The 1/48th zone
wedges defined in Table IB are identical to the usual irredu-
cible BZ’s (IBZ’s) for the cubic lattices. Although it leads to
some awkwardness, the standard convention is followed for
naming BZ’s. For example, b, is the BZ for k-vectors which
are reciprocal to the body-centered cubic space lattice. This
convention has been maintained in naming k-vector sets.
For example, the set of k-vectors, fu consists of k-vectors of
the form (2/ + 1,2/ + 1,2k + 1)27/Na, where i,j,k are any
integers or zero. These k-vectors are actually body-centered
type vectors. For BZ z,, the FSA point sets fu(z,,) are identi-
cal to the Chadi~Cohen points. The k-vector lattices s, b, and

fare reciprocal to space lattices NS, NB, and NF, respective-
ly. The k-vector points sets bu and fu involve k-vectors reci-
procal to space lattices NB and NF, respectively. The k-vec-
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tor lattice u is a universal lattice in that it is a sublattice of all
other lattices, s, b, and f.

The relevant results, Eq. (18) of I, are reproduced here:
Y wkjexp[k+R — R')]
8lzn,

= N3[n,4 (R,R;NS)+ n,4 (R,R;NES)

+ n,4 (R,R’;NFS) + n.4 (RR;NBS)1/M,, (1)

where the factor M, is determined by the BZ:
M, =8, M, =4, M, =2 for thethree cubic BZ’s. The sum
includes k-vectors from the set g restricted to BZ z,, as dis-
cussed above and in Table I. The factors w(k) are weights
which allow all points in and on the surface of zone z,, to be
included in a symmetric manner. Regarding the points as
small spheres, the weights are equal to the fraction of the
sphere contained inside zone z, . Thus, all interior points k of
z, have weights w(k) = 1. The weights for surface points are
tabulated in Table V along with other information regarding
surface points. In the right member of Eq. (1) the constants
n;, i =0,1,2,3, are determined by the sum type, n, = n;(g).
When positive integer N is even, all sum types ate meaning-
ful in Eq. (1); but when ¥ is odd, only certain sum types are
meaningful. The sum dependent parameters n, and the asso-
ciated restrictions with respect to NV are listed in Table II. It
should be noted that only the first four rows of entries in
Table I1 are basic in that the remaining entries correspond to
sums which are additive combinations of the basic four.

Thefunctions4 (R,R’;NL ) = lifthespacelattice vector
R - R'is contained in the set VL of space lattice vectors and
is zero otherwise. Thus, in the same sense that inequivalent
k-vectors are restricted to the BZ, the right member of Eq. (1)
implies a zonal restriction for nonequivalent space lattice
vectors. These zonal restrictions on inequivalent space lat-
tice vectors depend on the sum type and are listed in Tabie I1
under the column heading Z,, . Thus, it is possible to have a
set of inequivalent body-centered space lattice vectors res-
tricted to simple cubic (Sy ) or face-centered cubic (Fy)
zones. Note that in the case R = R’ the left member of Eq. (1)
is evaluated to be the number of whole points of sum type g in
BZ z,,

No(glz,)) = N’no/M,. (2)

TABLE II. Brillouin zone sum parameters for Eq. (1).*

P(S) P(B) PF) g fio n, ny ny Zy
e e e u 1 1 1 1 Sy
e e e eu 3 1 -1 — Sy
e e e bu 3 -1 -1 Sy
e e e Sfu 1 —1 1 -1 Sy
o o o s 8 8 8 San
e o e b 4 0 0 4 By
e o e Sfeu 4 0 0 —4 By
e e o f 2 0 2 0 Fy
e e o beu 6 0 -2 0 Fy

®The first three columns labeled P (L ) indicate restrictions on N for each of
the space lattices. A (sub) lattice sum g which occurs nontrivially only for
even Nis indicated with an e and a sum g which occurs nontrivially for both
even and odd N is indicated with an o. The last column Z,, specifies zonal
restrictions on lattice vectors.
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To illustrate its meaning and use, Eq. (1) is applied to
approximate expansion coefficients for a function f (k) which

is invariant to translations by a reciprocal lattice of vectors
K, f(k + K) = f(k),

fk)= " C(R)exp(ik-R). (3)
GiZy)

The reciprocal lattice { K} determines the BZ z, and the
appropriate space lattice G [exp(/k-R) = 1].'For a given
positive integer NV the finite set of k-vectors g(z,,) determines
the zone Z,, of inequivalent space lattice vectors. Space lat-
tice vectors Rand R + R’ are equivalent in the sense that for
all k-vectors in g(zy ) exp[ik+(R + R’')] = + exp(/kR) for all
R’ contained in the extended space lattice NZ. Certain R-
vectors on the surface of zone Z,, may also be equivalent in
this sense. The prime on the sum in Eq. (3) is a reminder to
exclude all but one of these surface points. With these restric-
tions on the space lattice vectors, Eq. (1) reduces to

g;) wik) exp[/k<R — R)] = No(g(zy )}Sr g, (4)

and the coefficients in Eq. (3) are

c (R)%g‘Z] w(k) exp( — ik*R) f(k)/No(glzy ). (5)

In Sec. II symmetry-adapted plane waves are defined,
and their orthogonality relations obtained for BZ integrals.
Then in Sec. III FSA’s to the BZ integral orthogonality rela-
tions are made. The reason for proceeding in this manner is
that it is desired to make very clear the relationship of FSA’s
to their BZ integral counterparts. The paper concludes in
Sec. IV with a discussion of the results and a comparison of
FSA’s with symmetry-adapted plane waves.

Il. SYMMETRY-ADAPTED PLANE WAVES

The use of irreducible symmetry operators (ISO’s) to
reorganize a basis set of functions into irreducible subspaces
or symmetry-adapted functions, which transform according
to the irreducible unitary representations (IUR’s) of a finite
group is well-known.? For a summary of the properties of
ISO’s and their representation in the factored form which
will be exploited here the reader is referred to papers by one

of us.**
Symmetry-adapted plane waves (SAPW’s) are defined

in terms of an ISO P(R ), for ITUR R = {D *(s)] as

fm(R,K); = P(R), exp(ik'R,,), (6)
where the ISO is defined:
P(R); =(ng/G°)Y DFRs™)s. (7)

seG

Indices i,j = 1,...,n; specify the rows and columns of the
matrix representatives, D % (s). The vectorsR,, = (i, j, k )a/2
of the appropriate space lattice are restricted ony to the semi-
infinite irreducible wedge, i>j>k>0. In this section consid-
erations are restricted to integrals over the BZ. The proper-
ties of the ISO’s assure that a group element s operating on a
SAPW transforms according to the IUR,

FnlRK)y = 3 fo(RK), D (s). ®)
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1t should be noted that one has no @ priori assurance that the
SAPW’s defined by Eq. (6) are nonzero or linearly indepen-
dent. These problems are analyzed below.
A point group element s operating on a plane wave
sexp(ik'R,, )= explis 'k'R,,) = exp(k-sR,,) (9)

either produces a new plane wave if sSR,, #R,, or recovers
the same plane wave when sR,, = R,,. The subset of group
elements which leave R, invariant is a subgroup G,, of the
point group. All new plane waves are determined by the left
coset generators S, of the point group G with respect to
G,, G=S,G,, . Thus, the problem of finding SAPW’s for
exp(k-R,, ) is equivalent to reorganizing the stable subspace
S . expl/k°R,,) into irreducible subspaces. The total number
of linearly independent SAPW’s equals the number of group
elements in left coset S,,, .
BZ integrals of products of functions (k) and g(k) will

be represented in the conventional manner

(f(k).g(k)) = §yz d°k f(k)*g(k). Thus, the orthogonality
relations for plane waves is expressed

(exp([k.Rm )’ exp(ik.Rm' ) = 'QBZ 5m,m' ’ (10)

where 2, is the volume of the BZ. BZ integrals with
SAPW’s are

(o (R K)of e (R "))
= Or.r 8} 8 (€XPlKR,,), £, (R K):;), (11)

where the adjoint and multiplication properties of ISO’s are
used to obtain the right member of Eq. {11). Also, the factor
8, m 18 extracted because of the orthogonality of distinct
plane waves and the requirement that space lattice vectors
R,, be chosen from the irreducible wedge. IfR,, and R,
form distinct plane waves, then the plane waves generated by
the point operations implicit inf,, (R,k},; will also be distinct
and therefore orthogonal.

Normalization integrals are a special case of Eq. (10).
The equation

(o (RK);;, £, (R K);) = N (R,m), (12)
defines the diagonal components of the normalization fac-
tor. From Eq. (11} it is evident that the only contributions to
the normalization integrals arise from the point group ele-

ments contained in the subgroup G,, defined above. Hence,
using Eq. (7),

N(R,m); =(ng/G°) ¥ D*(s™"),. (13)
G,
A zero value for a normalization integral implies that the
SAPW is identically zero. From Eqgs. (11) and (12} it is seen
that

(S (RK)y, [ (RK) ) = 6;; N (R,m),,. (14)

Thus, nonzero SAPW’s with the same “row” index i, but
differing column indices j, /' are orthogonal and have the
same normalization. Such functions are called “‘partner”
functions. From the defining Eq. (6) it is seen that there are
ny sets of partner functions. To complete the analysis of the
right member of Eq. (11}, an analysis of the relationship
between partner function sets must be done.

In general a nonzero result may occur in the right mem-
ber of Eq. (11) when i’ #i. The factored ISO’s defined in
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TABLE III. Irreducible symmetry operators {ISO’s) for the cubic point
group.®

A. Definitions of cubic point group operators

E(x,y,z) = (z,y,z) T,(x,y,z) = (Z,X»}’l
IDX(.X,)},Z) = (x,z.y) Cx (X,}),Z) = (X. ¥, — Z)
Cy(x,y,z)=(—x,y,—z) I(levz)=(_xv—yr_z)

B. ISO's corresponding to “‘pleasant” IUR’s of the cubic point group

Pldsp),, = E+ T, + THE + CNE + CNE + sID )(E + pI)/48
P(Ep),, = (E+ &’T, + oT)E + C)E + C,|E + pl)/24

PEpl; =ID,/ ' P{Ep) D, ", ij=12

P(Tsp)y, = (E+ C)E — CJE+sID }E + pl)/16

P(Tsp), =T "P(Tsp) T\, 4,j=123

C. Alternative, time-reversal invariant ISO’s for the two-dimensional ITUR
PED),,=RE—-T, — T,Z)(‘E—O— CNE + CWE+ ID)E + pl)/48
P(Elp)ij =7, - Tiz)/‘/:;’k ]P(E}P)n((rl - TIZ)/\/3) —=1,
Lj=12

2 Only six of the 48 cubic point group elements appear explicitly in the
factored form of the ISO’s. These elements are defined by their effect on a 3-
vector, (x, y, z), in part A. For multidimensional irreducible unitary repre-
sentations only, a basic projection operator is listed explicitly along with the
relationship to the remaining ISO’s. The connection between the present
notation and the notation of Bouckaert et al. is given in the caption to Table
III of Ref. 5. Parameters s, p have values + 1 or — 1 and w = exp(i27/3).

Table IIIB correspond to IUR’s which are particularly suit-
able for analyzing relationships between partner sets of
SAPW'’s. The ISO’s are represented in terms of the identity
element and inversion element and four more elements of the
cubic point group whose choice was motivated by their close
association with symmetry lines and planes of the cubic irre-
ducible wedge. The six-point group elements which occur in
the ISO’s are defined by their transformation properties
when acting on a 3-vector in Table IIIA. The nonzero
SAPW’s produced by these ISO’s have the property that
they are either orthogonal to one another or, in the case of
related sets of partner functions, they differ by a phase fac-
tor. This observation is demonstrated below.

First, note that each projection operator P (R ),; in Table
I11B is a linear combination of a set of group elements which
are a subgroup designated Gy, of the cubic point group G.

For these IUR’s a general ISO is expressed in the form
PR);=s"""PR); s~ ", ij=1,.,ng, (15)

where point group elements s’ are left or right coset genera-
tors for G with respect to the subgroups Gy, ;. Thus, the
SAPW in the right member of Eq. (11) may be written as

SuRXK);; =P(R);s~" " exp(ik-R,,). (16)
Since P(R ), is an ISO for a one-dimensional IUR of Gy,
any element of Gy, satisfies the relation

hP(R); =P(R )iiDR(h )it (17)
Using the adjoint property* of ISO’s, Eq. (17) may be rewrit-
ten as

P(R); =DR(h );iP(R )iih. (18)
Then, if any element & contained in G ; is such that element
s,, = hs ~“ ~"is contained in group G,,, , it follows from Egs.
{16) and (18} that

SfnRXK)y; = DR (h);, £, (RK);. (19)

In this case the BZ integral in the right member of Eq. {11) is
evaluated as
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TABLE IV. Normalization factors for cubic SAPW’s formed with respect to the eight types (as distinguished by symmetry) of space lattice vectors,

R,, = (x,y,z}, occuring in the irreducible wedge x>y>»z>0.*

R(j)  (0,0,0) (x,0,0) {x,x,x) (x,%,0) (x2.0) (x,x,2) (x,,0) (x.p.2)
Asp(11) (1 +s)14+p/4 (1481 +p)/24 (1 +5)/16 (1 4+3)(1+p)/48 (1 +5)/48 (1 + 5)/48 (1 + p)/48 1/48
Ep(11) © (1+p)/12 0 (1 +p)/24 1/24 1724 (1+p)/24 1/24
Ep(2i) O N, =N, 0 N,, = 0N, N,y =Ny, N, = &*N,, (14 p)/24 1/24
E'p(11) © (1+p)/6 0 (1 + p)/48 1/12 1/48 (1+p)/24 1724
E'p2) 0 0 0 Ny=—V3N, 0 Ny, = V3N, (14 p)/24 1/24
Tsp(11) 0 (1+s)1—p/8 N =Ny, (1—p)/16 (1+s5)/16 1/16 (1 —p)/16 1/16
Tsp(2i) O 0 N,y = Ny, N,y = —sN,, 1/16 Ny = —sN,, (1—pV/16 1/16
Tsp(3i) 0 0 (1+5)/16 (1431 +p)/16 Ny= —sNy, (1 +s)/16 (14 p)/16 1/16

? Independent normalization factors are given in terms of the parameters, s, p, etc. characterizing the ISO’s of Table II1. Relationships between sets of partner
functions are indicated by specifying the relationship. For this purpose the notation for normalization matrices N (R,m), is abbreviated to V.

(exp(ik‘R,,), f,.(R.k),;) = D* (h );}N(R’m)ii"QBZ .
On the other hand, if there is no element in the set
Grys ™"~ " contained in G,,,, then the right member of Eq.
(11) is zero.

The analysis of BZ integrals of SAPW’s is summarized
by

(S (R’k)ij’fm' (R I’k)i’f )= 6R,R ' 6jj'5m‘m’N (R’m)i’f‘QBé!l
where the relevant information for cubic point group norr(na-)
lization matrices is listed in Table IV. From Eq. (14} it is seen
that the normalization N (R,m);; for partner SAPW’s is inde-
pendent of the column index. Nonzero off-diagonal elements
of the normalization matrix simply mean that a relationship,
Eq. (19), exists between sets of partner functions. Thus, the
relevant information consists of explicit results for the inde-
pendent normalization factors in terms of the parameters of
the ISO’s as defined in Table IIL. When sets of partner func-
tions are related, the entry for the normalization factor states
the relationship,

N (R,m);; = D®(h);N(R,m);. (22)

From Egs. (13) and (19) it follows that the normalization for
the related partner set is

N(R,m);; = |D®(h),|’N(R,m);. (23)

ISO’s of the form shown in Table IIIB having IUR’s
with the properties in Egs. (15)~(18) above may be found for
many groups of physical interest, including all nonrelativis-
tic point groups and space groups. More complicated, but
analagous IUR’s may be found for the point and space dou-
ble groups.**® The late Professor J. M. Keller suggested that
these be called “pleasant” representations. It is not known
what properties of finite groups might forbid “pleasant”
IUR’s.

For some purposes the time-reversal (complex conjuga-
tion in this context) properties of ISO’s transforming accord-
ing to pleasant IUR’s may not be desirable. For example, in
Table IIIB, ISO’s for IUR’s Asp and Tsp are invariant to
time-reversal while the two-dimensional IUR Ep has relati-
vely complicated time-reversal properties. Alternative,
time-reversal invariant ISO’s for the two-dimensional IUR’s
are given in Table IIIC and distinguished from IUR Ep by
attaching a prime (E 'p). These IUR’s and the corresponding
ISO’s differ by a unitary transformation. It follows that the
form of Egs. (19)-(23) remains the same. However, for the

(20)
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IUR E'p the proportionality constant in Egs. (19), (20), (22),
and (23) is not simply a matrix element as above, but is a
combination of matrix elements. The normalization factors
for both two-dimensional IUR’s are listed in Table IV in the
condensed form described below [Eq. (21)].

lli. FINITE SUM APPROXIMATIONS

FSA’s to BZ integrals may be viewed as a partition of
the BZ volume into N, identical cells surrounding each point
k in the sum. Thus, in the notation for finite sums summar-
ized in Sec. I,

JB AW =Y w2y N SR,

where the weight factor w(k) is unity for points inside 2y,
and is such that w(k)2y, /N, is the fraction of the cell inside
12, in the case of points on the BZ surface. Also, note that
04, = (27 /02, where £2, is the volume of a primitive cell
in 3-space. Thus, the cell volume 25, /N, = (27)’/£2, where
2 = N2, is the volume of the primitive cell in 3-space con-
taining space lattice vectors which are inequivalent with re-
spect to the points in an FSA.

In the integral limit NV, approaches infinity and no finite
space lattice vectors can be on the surface. For finite sums
and the consequent finite volume {2, surface points R, may
occur in an SAPW which differ from the base point R,,, (in
the irreducible wedge) by a space lattice vector which is equi-
valent to 0 relative to the summation points. Therefore, the
normalization for SAPW’s formed with respect to surface
points is affected. This effect will be represented as a factor
M (R,g,m) as it is dependent on the IUR, the sum type, and
the point R,,, considered. Thus, the finite sum analog to Eq.
(21)is

Zg«w w(K) £, (R K)o (R " K);

(24)

= 6R.R'6j,f5m,m'N0(g(zN))N (R,m);;M (R,g,m), (25)
where the finite point set g(z,) must be invariant to point
group operations. Of course, one may obtain the same result
directly by using Eq. (1) to evaluate the left member of Eq.
(25). This is how the surface normalization factors M (R,g,m)
displayed in Table V were evaluated. The “derivation” of the
finite sum form from the BZ integral is supplied for the in-
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TABLE V. Weights and normalization factors for surface points.”

Points wk)  Asp(11) E'p(11) E’p(2i) Tsp(11) Tsp(2i) Tsp(3i)
A.Zones, =Sy

(4)(N,N.N)/2 /8 (1,3p3,p) X X (l,-p,—1p) x X

(3) (N,N,2k)/2, N> 2k 174 (1,2p,1,0) {1,2p,1,0) x (1,0, — 1,0) x (1,0, — 1,0)

(2) BN, ik ) AN > j /2 (1,p,0,0) (1,p,0,0) (1,2,0,0) (1,7,0,0) (1, — p,0,0) (1, - p,0,0)
B. Zone by, = Fyy

(5) (¥,0,0) 1/6  (2,0,4,0) (2,0, — 2,0) x 0 X X

(4} (N,N,N)/2 174 (1,0,3,0) x x (1,0, — 1,0) X X

(Y EN =N —i), N>i>iN 173 (1,0,2,0) (1,0, — 1,0) x (1,0,0,0) N,y Ny, X

(2) (N,N,2k)/2, N> 2k 12 (1,0,1,0) (1,0,1,0) x (1,0, — 1,0) X (1,0,1,0)

V(N —ik), N>i> N, N>i+k 172 (1,0,5,0) (1,0, — 4,0) N,y =Ny, (1,0,0,0} Ny <Ny, (1,0,5,0)
C.Zonefy =By

(5) NAN,0) 1/4  (2,0,0,2s} (2,00, — 1) Ny <Ny, 0 (2,0,0,2s) 0

(4) (N, jik ), AN > j; (HF) 172 (1+p000 (1+p000  (1+p000] (1+4p000 (1-p000 (I —p000)

(3) (L, NN — 1), N> ipIN 172 (1,0,0,s) (1,0,0, — 3 p) (1,0,0,1 p) (1,0,0,0) (1,0,0,03) (N3 o< Nyy)

(2) (i, jk), N>i>} N> j>1 N; HF 1 (1,0,0,0) {1,0,0,0} {1,0,0,0) (1,0,0,0) (1,0,0,0) (1,0,0,0)

* Points are specified by 3-tuples (i, j,k ) where i» j>k>0. A restriction to the hexagonal face 2(f + j + &k ) = 3N is denoted by HF. Symmetry-related, distinct
HF points have been combined. Weights are listed in the column w(k). Surface normalization factors are represented

M(R,g,m) = {mgn, + mn, + m,yn, + myns)/ny, where the sum-dependent factors n, are given in Table I1. Only the 4-tuples (m,,m ,m,,m,) are listed for each
irreducible representation R. Interior points have weights w(k) = 1 and surface factor M (R,g,m) = 1.

sight into the meaning of FSA’s and to motivate the parame-
trization of Eq. (25).

The results for the surface normalization factors listed
in Table V might appear deceptively simple. To obtain these
results, it was necessary to analyze each distinct type of sur-
face point which occurs for each type of zone. For example,
in the case of zone B, four entries appear in Table VC which
represent the combined results for 15 distinct types of points.
An example of the derivation for a particular point is given in
the Appendix.

Six types of k-vectors on the hexagonal face (HF) of the
BZ f,; have been combined because they are symmetry-relat-
ed. The points (NV,1V,IN ) and (N, j,AN — j) listed under the
entry Table VC(4) of themselves have weight w(k ) = , but
they are related by the symmetry operation D, [D, (x,y.z)

= (—2z, —y, — x)] to points in the BZ which differ from
independent points in the IBZ by a reciprocal lattice vector,
{N,N,N ). These have been listed as one point in Table VC(4)
with weight w(k) = 1. Also, note that the combined points of
this type (N, j,k ) include values {N>/> k>0, which are not all
HF points. The parentheses about the HF is a reminder that
this is not an absolute restriction to the HF. Similarly, the
points (i, j,k ) of Table VC(2) of themselves have weight

w(k ) = | and are restricted absolutely to the HF. They are
related as above by the symmetry operation D, plus a reci-
procal lattice vector to inequivalent points on the surface of
the IBZ and have been combined.

In Table V the entries “x” indicate that a relationship or
zero value for the SAPW occurs without consideration of
surface effects as shown in Table IV. Only zero values or
relationships which arise from surface effects are recorded
explicitly in Table V. In the case of relationships only a pro-
portionality is indicated. This is because there is an ambigu-
ity in sign between plane waves formed with respect to relat-
ed surface points R,,, . This sign depends on the type of sum
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over k-vectors and is not of importance in applications of the
results.

Obviously, it would be easy to overlook a relationship
or a factor in the derivation of these results. The tabulated
quantitites have been checked in the context of applications
to expansions of periodic functions in terms of finite sums of
SAPW’s. For this purpose the basis set of SAPW’s must
exclude related SAPW partner sets and, of course, trivial
SAPW’s which are identically zero. With these provisions
Eq. (25) becomes

2 wklfy, (RK) (R 'Ky

8lzy,
= 5R,R'5i,i' 6j.f5m,m'N(g’z’R’m)i’ (26)
where the combined normalization factor is
N8 z, R, m); = Ny(g(zy))N (R,m), M (R,g,m). (27)

The tables were verified by evaluating the left member of Eq.
{26) directly and comparing this result to the right member
as obtained using the tabulated information. This process
was done completely only for N = 2 as the direct evaluation
is quite expensive on the computer. The special case of Eq.
(26) where m = m’ and the space inversion parities are the
same was verified for N =2 — 8. All cases included in the
tables were checked in this way.

The coefficients in the expansion of a periodic function
of arbitrary rotational symmetry in terms of a finite sum of
SAPW’s,

FK=F 3 S CRm)fRK), (28)
GIRZY Ry
are obtained using Egs. (26) and (27) to be

C(R,m); = zg{ wik)f,, (RK);F (kK)/N (g, z, R, m),.
(29)
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Equations (28) and (29) are the SAPW analogs to the plane
wave expansion, Egs. (3) and (5). For a given finite set of k-
vectors, g(z, ) the expansion represented by Egs. (3) and (5) is
just a reorganized version of the expansion represented by
Egs. (28) and (29).

The BZ sums in Egs. (29) may be reduced to sums over
points in the irreducible wedge (IBZ). For this purpose, let
G, be the subgroup of elements # for which 2k =k, and let
Sy be the set of left coset generators for the entire group,

G = S, G, Then,

C(R,m),

=2 2

glrznl T seG

(w(sk)/°G, I, (R.K); F (sk)/N (g, z, R, m),,
(30)

where g(rz ) represents those k-vectors of the set g(z, ) con-
tained in the IBZ. Using the definition and properties of
ISO’s given in Egs. (6)—(8), Eq. (30) becomes

C(Rm); = ¥ (du/ng) 3 fn(RK),,*PR);

glrzy) n=1lng
XF(k)/N (g, z, R, m);, (31)
where
°d, =%, wlk) (32)

is the order of the group of the k-vector d, , which is the set of
group elements 4 such that 2k = k + K. The prime on the
sum in Eq. (31) is a reminder to exlude symmetry-related
hexagonal face (HF) points.

Since, the weights to be associated with HF points are
complicated and may be an element of uncertainty to the
user, they are summarized here.

In the cases [Egs. (26) and (29)] of results where the
sums extend over the entire BZ, the weights for the surface
points are those given in Table V except for the HF points
included in entries, Table VC (4} and (2). These weights must
be divided by a factor 2. The corresponding symmetry-relat-
ed HF points must be included in the sum and carry the same
weight. The presentation here reflects the manner in which
sets of points were generated to test Eq. (26) on a computer.
First, points of a specified type were found within the IBZ
according to the zonal restrictions of Table IB. HF points
(i, ) of the type where j > LN are exluded from this basic set
of points. Interior points are assigned weight w(k) = 1 and
surface points are assigned weights as given in Table V. In
performing the sum the module of points generated by the
elements of S, is found. In the case of HF points the weight
from Table V is halved, and an additional module generated
corresponding to the symmetry-related HF point.

For sums over points in the IBZ as in Eq. (31) the
weights are taken exactly as given in Table V with the provi-
sion that they symmetry-related HF points not specified in
Table V are excluded from the sum.

IV. DISCUSSION

The FSA’s to BZ integrals are given in Egs. (2), (26)—(32)
with parameters and conditions summarized in Tables I-V.
The results of I, Egs. (19) and (20), correspond to the present
results in the case where F (k) is a periodic function invariant
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to rotations of the cubic group, P(4 + +),,F (k) = F (k).

One objective of the present work is to determine how
the special character found for Chadi~Cohen points mani-
festsitselfin the case of other symmetries besides the identity
IUR. Such a comparison is made in Table VI in the case of
functions F (k) which are invariant to translations by vectors
reciprocal to the fcc space lattice. From Table IT under the
column heading Z,, it is seen that the sum pairs
{Sns Suan ) (On, feuy),(fv.beuy) have similar accuracy in the
sense that independent SAPW’s are formed with respect to
lattice vectors inside zones S,,,B,, and Fy,, respectively.
These sum pairs are also complementary in the sense they
may be combined to form lattice sums £, , s,,, and s,, re-
spectively. This is the reason that the sublattices feu and beu
were deemed worthy of special consideration.

Chadi—Cohen points are special only in the context of
approximations to certain coefficients in the finite sum ex-
pansions of functions which transform according to a parti-
cular IUR of the group. The Chadi—Cohen points corre-
spond to sublattice fu with appropriate restrictions to an
IBZ. The first six rows of Table VI compare sums over a
simple cubic array of points s to sums over sublattice fu. For
example, for sum type s with N = 4 there are 19 terms in the
FSA'’s to the coefficients, Eq. {31). For IUR 4 + + there
are 19 independent SAPW’s of 4 + + symmetry and no
SAPW’s corresponding to surface points in the zone Sg van-
ish. Similarly, for this row IUR T + + has 16 independent
partner sets or 48 SAPW’s and 10 partner sets corresponding
to surface points vanish. The sum fu with ¥ = 8 also corre-
sponds to a partition of the BZ into 256 cells of equal volume,
but there are only ten terms in the sum in Eq. (31). In this case
there are ten independent SAPW’s of 4 + + symmetry
and nine SAPW’s corresponding to surface points in zone Sy
vanish identically for all k-vectors in the sum fu. It is in this
context that the special nature of the Chadi-Cohen points is
recognized as a surface effect. However, the surface effect
does not persist in any easily definable manner for symme-
tries other than IUR A4 + + . Because the results for the
simple cubic and body-centered space lattices are very simi-
lar to the results presented in Table VI, they will not be
reproduced here.

Crucial to any practical calculation is an estimate of the
accuracy of the method. In the present work we have simply
noted that the employment of a particular type of sum corre-
sponds to partitioning the BZ into N, cells of equal volume.
If one knows the extremes of variation of the function under
consideration within such cells, then one can made a crude
estimate of the associated error. A directly related means of
discussing the error was used by MacDonald.® To each sum
in k-space there corresponds a zone in real space containing
lattice vectors for which independent information can be ob-
tained. Table II specifies the zones which correspond to each
sum type, and Table IB defines the zones. MacDonald fo-
cused on the BZ average and quantified the precision of a
sum type as the number of rotationally distinct lattice vec-
tors in order of increasing magnitude which give zero contri-
bution to a BZ average. In the present context this measure
of precision corresponds to counting the number of rotation-
ally distinct lattice vectors in the zones of Table I where Nis
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TABLE VI. Comparison of the number of independent SAPW partner sets for sums of similar accuracy.”

Sum N No N, A++ A+—- A—+ A—— E'+ E'— T++ T+— T—+ T—— $H#SAPWs
s 4 256 19 19 4 4 1 20 4 16 21 7 16 256
© ® © o  © ® (1 O 7 )
Sfu 8 256 10 10 10 2 2 10 10 20 20 12 12 256
(%) 0) (2) ©  (10) (0) 6y (100 {2 (8)
s 8 2048 85 85 40 40 19 120 56 128 155 93 128 2048
@ 20 0) (9) © (28 (36) 25 @3y (16)
Su 16 2048 60 60 60 28 28 84 84 144 144 112 112 2048
{25) {0) (12) (0) (36) ) (20) (36) (12) (32)
s 16 16 384 489 489 336 336 231 816 560 1024 1143 889 1024 16384
(0) (72) (0) (49) Y {120) {136) (81)  (127) (64)
Sfu 32 16 384 408 408 408 280 280 680 680 1088 1088 960 960 16 384
(81) {0) (56) 0y (136) (0) (72)  (136) (56)  (128)
f 4 64 8 8 2 0 0 5 1 5 5 1 3 64
©) 0) (1) 0 (2) 0) 1 4 (1) (2)
beu 4 192 11 7 1 1 0 6 1 6 7 2 4 80
{1 (1) ©) 0) (1) () (0) (2) {0) (1)
f 8 512 29 29 14 6 3 30 14 36 41 19 28 512
0) 0) 4) 1 (6) (2) 4) 9 (7) (8)
beu 8 1536 56 28 13 10 4 32 15 38 44 24 31 560
(1) (1) 0) 0 4) (1) (2) (6) (2) (5)
f 16 4096 145 145 100 68 47 204 140 272 299 205 204 4096
0 0 (18] o 20 (12) {16) 25 (31} (32
beu 16 12 288 344 144 99 84 56 208 143 276 304 224 253 4256
1 (1) (0) o (16) {9) (12) @0 (1) (19)
b 4 128 11 11 1 1 1 10 2 9 9 3 9 128
©) 3) 2) (0) 2) (2) 3) (7) 4 2)
Sfeu 4 128 8 8 3 3 0 10 2 7 12 4 7 128
(3) (1 (0) i {2) (2) (3) (4) 3) (4)
b 8 1024 45 45 18 18 11 60 28 66 75 45 66 1024
(©) (7 4) n 4) (7) ® 14 12 {6)
Sfeu 8 1024 40 40 22 22 8 60 28 62 80 48 62 1024
(5) 3) ©) (4) (4) (7 (13) 9 © (19
b 16 8192 249 249 164 164 119 408 280 516 567 441 516 8192
@ 1y (8) (6) & (23 27 3y (34 17
Sfeu 16 8192 240 240 172 172 112 408 280 508 576 448 508 8192
9 {10) ) (13) (8) (23) (35) (22) (27) (25)

#The results are for the fcc space lattice. The sum type, &V, the number of k-vectors in the BZ(N;), and the number of k-vectors in the IBZ(N, ) are listed in the
first four columns. The corresponding number of independent partner sets for each JUR is specified in the next 10 columns. Immediately below these entries
(enclosed by parentheses) are listed the number of partner sets which are zero because they have a zero value for their surface normalization factors. The last

column lists the total number of independent SAPW’s.

replaced by 2V and exluding the lattice vectors which are
surface points of zone Z,,, It appears that MacDonald also
excludes any interior points which are larger in magnitude
than the smallest surface lattice vector. It should be noted
that MacDonald’s DPC sum types are identical to our lattice
JSin the case of the fcc space lattice. For the bec space lattice,
MacDonald’s DPC sets correspond to our sublattice feu for
even g and to our lattice b for odd g. MacDonald’s ¢ is identi-
cal to our N. We have little motivation to pursue this path,
since MacDonald’s measure of precision is only applicable in
the context of symmetry type A + + .

For practical purposes the use of complementary sums
is the most important feature that our investigation of FSA’s
to BZ integrals has produced. For example, suppose that the
sum s with V = 4 and the sum fu with N = 8 are used to
evaluate a coefficient for which both sums provide informa-
tion. The two results tend to form an upper bound with re-
spect to a more accurate calculation. As can be seen from the
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definitions of Table 1A, combining these points corresponds
to a sum over the lattice f with N = 8. The mean of the two
original calculations corresponds to a more accurate result,
and the deviation of this mean from the original results pro-
vides an estimate of the error. The process may be continued
by forming the sum beu with N = 8. This sum combined
with sum f for N = 8 produces the sum s with N = 8, amore
accurate result. Table VI provides the information regarding
the number of points involved at each step in the successive
approximation scheme outlined above in the case of the fcc
space lattice. For other lattices the progression is very simi-
lar.
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APPENDIX: EXAMPLES OF THE ANALYSIS FOR
SURFACE POINT NORMALIZATION FACTORS

The analysis will treat points of the form (x,y,0). Such
points serve to demonstrate the essential features of the anal-
ysis without excessive complication.

First, observe that the invariance group of the point
(x3,0) is G,, = (E,IC,) where element IC, = (I)(C,) in an
obvious extension of the notation for group elements defined
in Table ITIA. Next determine the total group of the point

G ™ for each of the zones. G ™ includes elements which
differ from the base vector by a lattice vector for zone Z. The
total group may be compactly expressed in terms of a set of

coset generators C ™, G ™ = C ™G,,. Note that the analy-
sis here is exactly the same as the determination of the group
for a k-vector on the surface of the BZ. The group elements

in C “™ are those needed to unite the pieces of a surface point
into a whole point.Thus, the number of coset generators

°C*™ determines the weight for a surface point, w(k ) = 1/

°C*™ The exception to this rule are points on the hexagonal
face of the zone f,; = B, as discussed in the text.

Zone S, contains one surface point, (1, j, 0) with
IN>j> 0 of the type (x, y, 0). This point is denoted S (2) be-
cause it is contained in the combined set of surface points
given in Table VA with point index (2). The coset generators

are C°™ = (E,IC,). Similarly, the point F(2'}, (i,N — i,0),
N>i> 1N, of zone Fy has a coset c'm= (E, ID,), where
ID, = (C,)(T,\ID,). Two distinct surface points of the type
{x, , 0) occur for zone B,. They are B (4), (N, ], 0), N>j>0
with C°™ = (E, IC,) and B (5), (N,1N,0) with

= (E, D)E, IC,), where D, = (I )(T,}{ID,).

The next step is to evaluate the normalization factors as
defined by Egs. (26) and (27) and to determine any additional
relationships. The adjoint property of the ISO’s is main-
tained for finite sums over sets of points in the BZ which are
invariant to point group rotations. Equation (26), specialized
to the diagonal terms, is rewritten as

S wik) expl — k'R, [, (RK); = NlghRm),. (A1)

glh)
The normalization factors are evaluated from Egs. (A1). The
finite sums are evaluated with Eq. (1). For surface terms only
those group elements contained in the total group of the
point, listed above for points of the form (x,y,0), contribute to
the normalization. The objective will be to obtain most of the
results pertinent to Tables IV and V simultaneously.

The factored projection operators may be rewritten to
include explicitly a factor involving group element IC, of
G,,. For example,

P(Tsp),, = (E + sID,\E + pI )(E + C,)|[E —pIC,)/16
(A2)

is identical to the form shown in Table IIIB because pI (E-
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+pl) = (E + pI) and inversion commutes with all group
elements. When this operator is applied to a plane wave as
defined by Eqgs. (6} and (7) the result may be expressed as

SalTsp)iy = (1 — pNE + pIC, + -) exp(ik'R,,), (A3)
where R, is of the form (x,y,0) and only operators contained
in the cosets for the expansion G *" in terms of G, are listed
from the remaining factors in Eq. (A2) since only these terms

contribute to the normalization. For interior points {x, y, 0)
the normalization found from Egs. (1) and (A1) is

N (g1, Tsp,m), = Nofglhy))(1 — p)/16 (Ad)

and the normalization factor is N (Tsp),; = (1 — p)/16 as de-
fined by Eq. (27) and listed in row 6, column 7 of Table IV.
For surface points the group element IC, produces an addi-
tional contribution to the normalization. In the case of the
point S (2) defined above ,the relation

IC, (AN,j,0( = (N, ], 0) — (N,0,0). The lattice vector
{M,0,0}is in the set NES and from Eq. (1) can be seen to have
a surface normalization factor

M(Tsp’gsm) = (”0 +Pn1)/”0‘ (AS)

The corresponding entry for point S (2) under the column
heading Tsp(11)is(1,p,0,0). All entries for normalization fac-
tors and surface normalization factors were obtained by si-
milar analysis.

Finally, note that no effect on the surface factors is evi-
denced by symmetry relations ID, and D, in the example
above. These group elements provide new relations between
partner sets. For example, for point F(2'),

ID, (i,N —i,0) = (i, N — i,0) — (N,N,0). Hence,

ID, exp(ik'R,,) = (+ / — ) exp(ik‘R,, ), where the sign is de-
termined by the sum type. The exact sign is the sign of n, as
given in Table II. Then, using the ISO’s defined in Table
I11B,

P (Tsp),, exp(ikR,,) = (+/ —)P(Tsp),,T\ID, exp{ik-R,,)

= —s(+/ —)P(Tsp), explik-R,,),
(A6)

where the right member follows because T',ID, = C, ID,
and P(Tsp),,C,ID, = — sP(T5p),,. In general, if a group
element relating zone surface points does not contribute di-
rectly to the surface factor, then an additional relationship
between partner sets will occur.
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Erratum: On Euler characteristics of compact Einstein 4-manifolds of metric
signature (+ + — — )[J. Math. Phys. 22, 979 (1981)]

Yasuo Matsushita
Department of Applied Mathematics and Physics, Faculty of Engineering, Kyoto University, Kyoto, Japan

{(Received 21 April 1982; accepted for publication 29 April 1982)

PACS numbers: 02.40. — k, 99.10. + g

Matrix (16a) on page 980 should read Inequality (ii) in Corollary 5 on page 981 should read
x M,]>2.
Equation (32) on page 982 should read

ds* = a*{dE? + sin® £dg? — dn® — sin® 5 dy?).

Ky +ovy 0 0
P, = 0 — Uy +ov, 0

0 0 — Uz + oV,
Equation (26b) on page 981 should read

- S 2
M]l= - — v+ — vy )w, 3
Di[M,] 4772ka W+ 2 Mz(ﬂz 2) v #0

Erratum: Time-dependent, finite, rotating universes [J. Math. Phys. 22, 2699
(1981)]

Marcelo J. Rebougas and J. Ademir S. de Lima
Centro Brasilerio de Pesquisas Fisicas/CNPg, Av. Wenceslau Braz, 71, 22.290-Rio de Janeiro-RJ-Brazil

(Received 19 March 1982; accepted for publication 26 March 1982)
PACS numbers: 98.80.Dr, 04.20.Jb, 04.20. — q, 98.80.Ft, 99.10. + g

1. Equation (3.5) should read constant sections (Bianchi IX) are timelike and not spacelike
1 1 1 as we have stated in the Introduction.
Yi=—X, Vo,=—X, Vi=——"7>— X, ) )
B, B, {a*—1)""°4 We are indebted to R. T. Jantzen for calling our atten-

2. Our solutions are not spatially homogeneous: the ¢- tion to these points.
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